Skip to main content

Abstract

This chapter will discuss in detail about the different processes involved in conversion of lignocellulosic feedstocks into biogas and the shortcomings of the conventional processes. The different methods of physical, chemical, and biological pretreatment for the lignocellulose will be discussed. The chapter also addresses methods of biogas production, analysis, and the different biogas reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abatzoglou N, Boivin S (2009) A review of biogas purification processes. Biofuels Bioprod Biorefin 3(1):42–71

    Article  CAS  Google Scholar 

  • Alam S (2006) Production of organic manure in Bangladesh, Bangladesh Livestock Research Institute’s Report, Savar, Dhaka, Bangladesh

    Google Scholar 

  • Anaerobic Digestate: End of Waste Criteria for the Production and Use of Quality Outputs from Anaerobic Digestate of Source Segregated Biodegradable Waste, Quality Protocol Report (2012) http://www.biofertiliser.org.uk/

  • Appl M, Wagner U, Henrici HJ; Kuessner K, Volkamer K, Fuerst E (1982) Removal of CO2 and/or H2S and/or COS from gases containing these constituents. US Patent 4336233 A

    Google Scholar 

  • Barker JC (2001) Methane fuel gas from livestock wastes: a summary, North Carolina Cooperative Extension Service, EBAE 071-80

    Google Scholar 

  • Bauer F, Hulteberg C, Persson T, Tamm D (2013) Biogas upgrading – review of commercial technologies SGC Report, vol 270, pp 1–82

    Google Scholar 

  • Beddoes JC, Kelsi S, Bracmort KS, Burns RT, Lazarus WF (2007) An analysis of energy production costs from anaerobic digestion systems on U.S. livestock production facilities. Technical Note No. 1, Natural Resources Conservation Service (NRCS), U.S. Department of Agriculture

    Google Scholar 

  • Bischoff M (2009) Knowledge in the use of additives and auxiliaries as well as trace elements in biogas plants, VDI report no. 2057

    Google Scholar 

  • Bjornsson L, Murto M, Jantsch TG, Mattiasson B (2001) Evaluation of new methods for the monitoring of alkalinity, dissolved hydrogen and the microbial community in anaerobic digestion. Water Res 35:2833–2840

    Article  CAS  PubMed  Google Scholar 

  • Bruni E, Jensen AP, Angelidaki I (2010) Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresour Technol 101:7–8713

    Article  CAS  Google Scholar 

  • Burr B, Lyddon L (2008) A comparison of physical solvents for acid gas removal. Gas Processors’ Association Convention, Grapevine, TX

    Google Scholar 

  • Cara C, Ruiz E, Oliva JM, Saez F, Castro E (2008) Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresour Technol 99:1869–1876

    Article  CAS  PubMed  Google Scholar 

  • Cesaro A, Belgiorno V (2013) Sonolysis and ozonation as pretreatment for anaerobic digestion of solid organic waste. Ultrason Sonochem 20:6–931

    Article  CAS  Google Scholar 

  • Chandra R, Takeuchi H, Hasegawa T, Kumar R (2012) Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy 43:273–282

    Article  CAS  Google Scholar 

  • Confined spaces: a brief guide to working safely (2016) http://www.hse.gov.uk/

  • Cuellar AD, Michael EW (2008) Cow Power: the energy and emissions benefits of converting manure to biogas. Environ Res Lett 3(3):034002

    Article  CAS  Google Scholar 

  • Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources: an introduction. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Dobre P, Nicolae F, Matei F (2014) Main factors affecting biogas production – an overview. Rom Biotechnol Lett 19:9283–9286

    CAS  Google Scholar 

  • Gerardi M (2003) The microbiology of anaerobic digesters, vol 33. Wiley, Hoboken, pp 726–734

    Book  Google Scholar 

  • Grande CA (2011) Biogas upgrading by pressure swing adsorption. In: dos Santos Bernardes MA (ed) Biofuel’s engineering process technology. In Tech, pp 65–84

    Google Scholar 

  • Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:5–520

    Article  CAS  Google Scholar 

  • Hjorth M, Granitz K, Adamsen APS, Moller HB (2011) Extrusion as a pretreatment to increase biogas production. Bioresour Technol 102:4989–4994

    Article  CAS  PubMed  Google Scholar 

  • Hsu TA, Ladisch MR, Tsao GT (1980) Alcohol from cellulose. Chem Technol 10(5):315–319

    CAS  Google Scholar 

  • Hughes SR, Gibbons WR, Moser BR, Rich JO (2013) Sustainable multipurpose biorefineries for third-generation biofuels and value-added co-products. In: Fang Z (ed) Biofuels – economy, environment and sustainability. InTech, Croatia, pp 245–267. https://doi.org/10.5772/54804

    Chapter  Google Scholar 

  • Hussey B (2013) Commission for energy regulation (CER). Consultation paper, Ireland

    Google Scholar 

  • Inventory of US Gas House Emissions and Sinks 2015, EPA430-R-15-004. http://www.epa.gov/climatechange/Downloads/Biogas-Roadmap.pdf

  • Ishikawa S, Hoshiba S, Hinata T, Hishinuma T, Morita S (2006) Evaluation of a biogas plant from life cycle assessment (LCA). Int Congr Ser 1293:230–233

    Article  Google Scholar 

  • Jackowiak D, Bassard D, Pauss A, Ribeiro T (2011) Optimisation of a microwave pretreatment of wheat straw for methane production. Bioresour Technol 102:6–6750

    Google Scholar 

  • Kangle KM, Kore SV, Kore VS, Kulkarni GS (2012) Recent trends in anaerobic codigestion: a review. Univers J Environ Res Technol 2:210–219

    CAS  Google Scholar 

  • Karthikeyan K, Kandasamy J (2006) Upflow anaerobic sludge blanket (UASB) reactor in wastewater treatment, water and wastewater technologies. UNESCO ELOSS-Encyclopedia of Life Support Systems

    Google Scholar 

  • Khan SA, Malav LC, Kumar S, Malav MK, Gupta N (2014) Resource utilization of biogas slurry for better yield and nutritional quality of baby corn. Adv Environ Agric Sci:382–394

    Google Scholar 

  • Khoiyangbam RS (2011) Environmental implications of biomethanation in conventional biogas plants. Iran J Sci Technol 2(2):181–187

    Google Scholar 

  • Kigozi R, Aboyade A, Muzenda E (2014) Biogas production using the organic fraction of municipal solid waste as feedstock. Int J Res Chem Metall Civil Eng 1(1):107–114

    Google Scholar 

  • Krishna PG (2001) Response to bio-slurry application on maize and cabbage in Lalitpur District. Final report his Majesty’s Government of Nepal, Ministry of Science and Technology, Alternative Energy Promotion Centre, Nepal

    Google Scholar 

  • Kumar S (2013) Bio-toilets for Indian railways. Curr Sci 104(3):283

    Google Scholar 

  • Kumar S, Malav LC, Malav MK, Khan S (2015) Biogas slurry: source of nutrients for eco-friendly agriculture. Int J Ext Res 2:42–46

    Google Scholar 

  • Lehtomaki A, Huttunen S, Rintala JA (2007) Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio. Resour Conserv Recycl 51:591–609

    Article  Google Scholar 

  • Lemmer A, Naegele HJ, Sondermann A (2013) How efficient are agitators in biogas digesters? Determination of the efficiency of submersible motor mixers and incline agitators by measuring nutrient distribution in full-scale agricultural biogas digesters. Energies 6:6255–6273

    Article  CAS  Google Scholar 

  • Lin Y, Wang D, Wang L (2010) Biological pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge. Waste Manag Res 28:10–800

    Google Scholar 

  • Liu WK, Du LF, Yang QC (2008) Biogas slurry added amino acids decreased nitrate concentrations of lettuce in sand culture. Acta Agric Scand 58:1–5

    Google Scholar 

  • Matsui T, Imlamura S (2010) Removal of siloxane from digestion gas of sewage sludge. Bioresour Technol 101(1):S29–S32

    Article  CAS  PubMed  Google Scholar 

  • Mattocks R (1984) Understanding biogas generation. Technical paper no. 4, Volunteers in Technical Assistance, Virginia

    Google Scholar 

  • Menind A, Normak A Study on grinding biomass as pretreatment for biogasification. Presented at the international scientific conference, biosystems engineering, Estonian Research Institute of Agriculture, Tartu, Estonia, 13–24 May 2010

    Google Scholar 

  • Michalska K, Ledakowicz S (2013) Alkali pre-treatment of Sorghum Moench for biogas production. Chem Pap 67:1130–1137

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  PubMed  Google Scholar 

  • National Biogas and Manure Management Programme, Ministry of New and Renewable Energy, Govt. of India. http://mnre.gov.in/schemes/decentralized-systems/schems-2/

  • Osbern LN, Crapo RO (1981) Dung lung: a report of toxic exposure to liquid manure. Ann Intern Med 95(3):312–314

    Article  CAS  PubMed  Google Scholar 

  • Petersson A, Wellinger A (2009) Upgrading technologies – developments and innovations IEA Bioenergy. www.iea-biogas.net

  • Potts LGA, Balkenhoff BC, Malmber E, Lewis AR (2008) Upgrading biogas for use as vehicle fuel. In: Proceedings waste and resource management – a shared responsibility, Warwickshire, England, pp 16–17

    Google Scholar 

  • Rogalinski T, Ingram T, Brunner GJ (2008) Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures. J Supercrit Fluids 47:54–63

    Article  CAS  Google Scholar 

  • Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35(5):1633–1645

    Article  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  PubMed  Google Scholar 

  • Santos MS, Grande CA, Rodrigues AE (2011) New cycle configuration to enhance performance of kinetic PSA processes. Chem Eng Sci 66(8):1590–1599

    Article  CAS  Google Scholar 

  • Sapci Z (2013) The effect of microwave pretreatment on biogas production from agricultural straws. Bioresour Technol 128:94–487

    Article  CAS  Google Scholar 

  • Sasso S, Laterza E, Valenzano BA (2012) Study about explosion hazards in presence of uncontrolled anaerobic digestive process. Chem Eng Trans 26:135–140

    Google Scholar 

  • Sathiananthan MA (1975) Biogas achievements and challenges association of voluntary agencies of rural development, New Delhi, India. Biomethanization – a developing technology in Latin America. Breman Overseas Research and Development Association (BORDA)

    Google Scholar 

  • Savoie JM, Vedie R, Blanc F, Minvielle N, Rousseau T, Delgenes JP (2011) Biomethane digestate from horse manure, a new waste usable in compost for growing the button mushroom, Agaricus bisporus. Proceedings of the 7th international conference on mushroom biology and mushroom products (ICMBMP7)

    Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61(2):262–280

    PubMed  PubMed Central  CAS  Google Scholar 

  • Scholz V, Ellner J (2011) Use of biogas in fuel cells – current R&D. J Sustain Energy Environ (Special Issue):11–15

    Google Scholar 

  • Sibiya NT, Muzenda E (2014) A review of biogas production optimization from grass silage. International conference on chemical engineering and advanced computational technologies, Pretoria, South Africa, 24–25 Nov 2014

    Google Scholar 

  • Smith P, Mah R (1966) Kinetics of acetate metabolism during sludge digestion. Appl Microbiol 14:368–371

    PubMed  PubMed Central  CAS  Google Scholar 

  • Song ZL, Yang GH, Guo Y, Zhang T (2012) Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion. Bioresources 7:36–3223

    Google Scholar 

  • Song ZL, Yang G, Han X, Fang Y, Ren G (2013) Optimization of the alkaline pretreatment of rice straw for enhanced methane yield. Biomed Res:1–9

    Google Scholar 

  • Sorathia HS, Rathod PP, Sorathiya AS (2012) Bio-gas generation and factors affecting the bio-gas generation – a review study. Int J Adv Res Technol 3:72–78

    Google Scholar 

  • Spoorthi G, Thakur RS, Kaistha N, Rao DP (2010) Process intensification in PSA processes for upgrading synthetic landfill and lean natural gases. Adsorption 17(1):121–133

    Article  CAS  Google Scholar 

  • Sterling MC Jr, Lacey M, Engler R, Ricke C (2001) Effects of ammonia nitrogen on H2 and CH4 production during anaerobic digestion of dairy cattle manure. Bioresour Technol 77:9–18

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Cheng JJ (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  PubMed  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:51–1621

    Article  CAS  Google Scholar 

  • Tarkow H, Feist WC (1969) A mechanism for improving the digestibility of lignocellulosic materials with dilute alkali and liquid ammonia. Adv Chem Ser 95:197–218

    Article  CAS  Google Scholar 

  • Thrän D et al. (2014a) Status and factors affecting market development and trade. IEA Bioenergy Task 37 & 40

    Google Scholar 

  • ThrÓ“n D, Persson T, Svennson M, Daniel-Gromke J, Ponitka J, Seiffert M, Baldwin J, Kranzl L, Schifer F, Matzenberger J, Devriendt N, Dumont M, Dahl J, Bochmann G (2014b) Biomethane – status and factors affecting market development and trade. IEA Bioenergy

    Google Scholar 

  • Tock L, Gassner M, Marechal F (2010) Thermochemical production of liquid fuels from biomass. Thermo-economic modeling, process design and process integration analysis. Biomass Bioenergy 34(12):1838–1854

    Article  CAS  Google Scholar 

  • Uggetti E, Sialve B, Latrille E, Steyer JP (2014) Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity. Bioresour Technol 152:437–443

    Article  CAS  PubMed  Google Scholar 

  • Vavilin VA, Rytov SV, Lokshina LY (1996) A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Bioresour Technol 56:229–237

    Article  CAS  Google Scholar 

  • Vintila T, Dragomirescu M, Croitoriu V, Vintila C, Barbu H, Sand C (2010) Saccharification of lignocellulose – with reference to miscanthus – using different cellulases. Rom Biotechnol Lett 15:5498–5504

    CAS  Google Scholar 

  • Wieland P (2003) Production and energetic use of biogas from energy crops and wastes in Germany. Appl Biochem Biotechnol 109:263–274

    Article  Google Scholar 

  • Wojdyla DZ, Gaj K, HoÅ‚tra A, Sitarska M (2012) Quality evaluation of biogas and selected methods of its analysis. Ecol Chem Eng 19(1):77–87

    Google Scholar 

  • Zhang Q, He J, Tian M, Mao Z, Tang L, Zhang J, Zhang H (2011) Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresour Technol 102:906–8899

    Google Scholar 

  • Zhao J (2013) Enhancement of methane production from solid-state anaerobic digestion of yard trimmings by biological pretreatment, Master’s Thesis, The Ohio State University

    Google Scholar 

  • Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, R., Tripathi, A.K., Kumar, S. (2018). Conversion of Lignocellulosic Feedstocks into Biogas. In: Sani, R., Krishnaraj Rathinam, N. (eds) Extremophilic Microbial Processing of Lignocellulosic Feedstocks to Biofuels, Value-Added Products, and Usable Power. Springer, Cham. https://doi.org/10.1007/978-3-319-74459-9_7

Download citation

Publish with us

Policies and ethics