Skip to main content

And Yet It Moves

  • Chapter
  • First Online:
Bridging the Gap between Life and Physics
  • 338 Accesses

Abstract

While nominally addressing here models of living systems, we consider that in doing so we automatically address models of Nature itself, in both its organic and inorganic appearances. We distinguish between the conceptual existence of life and its current instantiation, and address static and dynamic aspects of life. The limited number of previous models of life here considered are Robert Rosen’s (M,R) Systems (this extensively), Maturana and Varelas’ Autopoietic Systems, James Grier Miller’s book Living Systems, Gerard Jagers op Akkerhuis’s Operator Hierarchy, Ehresmann & Vanbremeerschs’ Memory Evolutive Neural Systems, Thomas Sebeok and Thure von Uexkülls’ Approach to Biosemiotics, and Chris Langton’s Life at the Edge of Chaos. We conclude with a comment on the inappropriate nature of restricting modelling mappings to one-to-one and many-to-one, thus excluding one-to-many, which may itself provide the basis for system evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We have intentionally left mathematics out of the sequence here: in conventional physics descriptions, mathematics does not appear in Nature ’s evolutionary sequence, even though arguably it should!

  2. 2.

    Chaos is the beginning, simplicity is the end’—M. C. Escher, in a letter to Oey Tjeng Sit.

  3. 3.

    Turing proposed an ‘imitation game’ to decide whether a machine could ‘think’, which entails an investigator putting questions to the machine , which can then answer in a non-vocal manner (e.g. by a teleprinter). The degree to which the investigator is unable to distinguish between the machine ’s style of answers over a period of time and that of a parallel human participant characterizes the machine ’s capabilities, and leads to a possible conclusion that it is capable of ‘thought’. Turing asked the following question: ‘Let us fix our attention on one particular digital computer C. Is it true that by modifying this computer to have an adequate storage, suitably increasing its speed of action, and providing it with an appropriate programme, C can be made to play satisfactorily the part of A in the imitation game, the part of B being taken by a man?’.

  4. 4.

    Aristotle (19942009) divided the ‘cause’ or ‘raison d’ être’ or ‘explanation’ or ‘origin’ of an entity into four parts: material cause , formal cause , efficient cause and final cause . In the case of a built house, for example, material cause is the bricks, etc. used in construction; formal cause is the architect’s plans for the house; efficient cause is the workmen carrying out the job; final cause is the meaning of the house …, e.g. to live in.

  5. 5.

    … leaving aside here the complications of ‘one gene , more than one protein ’ which are associated with alternative splicing (see, for example, Gravely 2001).

  6. 6.

    There is no generally agreed value for this percentage, which is variously quoted with values between 1 and 5%. In any case, protein-coding sequences only make up a minute fraction of some 3 billion base-pairs of human DNA .

  7. 7.

    Conrad Waddington’s (1942) term for ‘the interactions of genes with their environment , which bring the phenotype into being’.

  8. 8.

    Miller (1978, p. 1042) states: ‘The fact that organs cannot live independently of organisms may lead some to question whether the organ is really a distinct level of (a) living system . However, organs are clearly different in structure from either cells or organisms, and some organs do have local decision-making processes’. He (p. 1030) also states: ‘There may be more than seven levels of living systemsfor instance, the tissue may exist as a level between the cell and the organ , although there are probably no tissues all of whose cells are controlled by a single decider ’.

  9. 9.

    Rachel Carson’s seminal work ‘Silent Spring’ was only published in 1962, and it took many years for the ‘ecological movement ’ to get off the ground.

  10. 10.

    Here we clearly part company with Miller (1978 p. 1026), who states: ‘The conceptual system outlined in this book concerns concrete systems that exist in physical space -time and have the constraints that go with such existence . It does not, however, relate to all possible such concrete systems’. A major reason for our ‘parting company’ is that our own approach is far more abstract than that of Miller, who takes into account the contents of, and processes exemplifying, different levels of a living system , which we do not.

  11. 11.

    Our thanks to Edwina Taborsky for this example of firstness , secondness and thirdness .

  12. 12.

    We distinguish between the scientific ‘deterministic chaos ’, as associated with the logistic plot , and ‘causal chaos ’, which is associated with the internally completely unstructured ‘chaos ’ as it is referred to in common parlance.

References

  • Agamben, G. (2004). The open: Man and animal (K. Attell, Trans.). Stanford: Stanford University Press.

    Google Scholar 

  • Alpi, A., Amrhein, N., Bertl, A., Blatt, M. R., Blumwald, E., Cervone, F., et al. (2007). Plant neurobiology: No brain, no gain? Trends in Plant Science, 12, 135–136.

    Article  CAS  PubMed  Google Scholar 

  • Aristotle. (1994–2009). Physics (R. P. Hardie & R. K. Gaye, Trans.). http://classics.mit.edu/Aristotle/physics.html.

  • Bailly, S., & Bailly, C. (2001). Flights of fancy: Mechanical singing birds. Geneva: Antiquorum Management.

    Google Scholar 

  • Bloom, J. S., & Hynd, G. W. (2005). The role of the corpus callosum in interhemispheric transfer of information: Excitation or inhibition? Neuropsychology Review, 15, 59–71.

    Article  PubMed  Google Scholar 

  • Brier, S. (2006). The paradigm of Peircean biosemiotics. Signs, 2, 20–81.

    Google Scholar 

  • Cazalis, R., Carletti, T., & Cottam, R. (2017). The living organism: Strengthening the basis. BioSystems, 158, 10–16.

    Article  PubMed  Google Scholar 

  • Chandler, D. (2012). Semiotics for beginners. http://www.gregeckler.com/images/pdf/AD235/SemioticsForBeginners.pdf.

  • Check, E. (2006). It’s the junk that makes us human. Nature, 444, 130–131.

    Article  CAS  PubMed  Google Scholar 

  • Cottam, R., Ranson, W., & Vounckx, R. (2003b). Back to the future: Anatomy of a system. In D. Dubois (Ed), Computing anticipatory systems (pp. 160–165). New York: AIP.

    Google Scholar 

  • Cottam, R., Ranson, W., & Vounckx, R. (2005). Life and simple systems. Systems Research and Behavioral Science, 22, 413–430.

    Article  Google Scholar 

  • de Saussure, F. (2006). Écrits de Linguistique Générale. Paris: Gallimard (English translation: Writings in general linguistics S. Bouquet & R Engler (Eds), Trans.). Oxford: Oxford University Press.

    Google Scholar 

  • Deacon, T. W. (2012). Incomplete nature: How mind evolved from matter. New York: W. W. Norton & Co.

    Google Scholar 

  • Deacon, T. (2014). Complexity and dynamical depth. Information, 5, 404–423.

    Article  Google Scholar 

  • Delbrück, M. (1986). Mind from matter? An essay on evolutionary epistemology (p. 167). Hoboken: Blackwell Scientific Publications.

    Google Scholar 

  • Edmonds, B. (1997). Hypertext bibliography of measures of complexity. ftp://cfpm.org/pub/combib/complbib.txt.

  • Ehresmann, A., & Vanbremeersch, J.-P. (2007). Memory evolutive systems; hierarchy, emergence, Cognition. Amsterdam: Elsevier.

    Google Scholar 

  • Eilenberg, S., & Mac Lane, S. (1945). Relations between homology and homotopy groups of spaces. Annals of Mathematics, 46, 480–509.

    Article  Google Scholar 

  • Fleischaker, G. (1992). Autopoiesis in systems analysis: A debate. International Journal of General Systems, 21, 131–271.

    Article  Google Scholar 

  • Frith, M. C., Wilming, L. G., Forrest, A., Kawaji, H., Tan, S. L., Wahlestedt, C., et al. (2006). Pseudo-messenger RNA: Phantoms of the transcriptome. PLoS Genetics, 2, e23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garzon, P., & Keijzer, F. (2011). Plants: Adaptive behavior, root-brains, and minimal cognition. Adaptive Behavior, 19, 155–171.

    Article  Google Scholar 

  • Gravely, B. R. (2001). Alternative splicing: Increasing diversity in the proteomic world. Trends in Genetics, 17, 100–107.

    Article  Google Scholar 

  • Human Genome Project (The). (2003). http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml.

  • Kenny, V., & Gardner, G. (1988). The constructions of self-organizing systems. The Irish Journal of Psychology, 9, 1–24.

    Article  Google Scholar 

  • Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapk, K., & Kosik, K. S. (2003). A microRNA array reveals extensive regulation of microRNAs during brain development. RNA, 9, 1274–1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kull, K. (1999). Biosemiotics in the twentieth century: A view from biology. Semiotica, 127, 385–414.

    Google Scholar 

  • Langton, C. G. (1990). Computation at the edge of chaos: Phase transitions and emergent computation. Physica D: Nonlinear Phenomena, 42, 12–37.

    Article  Google Scholar 

  • Loots, G. G., Locksley, R. M., Blankespoor, C. M., Wang, Z. E., Miller, W., Rubin, E. M., et al. (2000). Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science, 288, 136–140.

    Article  CAS  PubMed  Google Scholar 

  • Louie, A. H. (2009). More than life itself: A synthetic continuation in relational biology. Berlin: Ontos Verlag.

    Book  Google Scholar 

  • Luhmann, N. (1984). Soziale Systeme: Grundriß einer allgemeinen Theorie, Suhrkamp (English translation: Social Systems, Jr., J. Bednarz & D. Baecker, Trans.), Stanford University Press, 1995. Copyright by the Board of Trustees of the Leland Stanford Jr. University. All rights reserved. Extract used by permission of the publisher, Stanford University Press, sup.org.

    Google Scholar 

  • Mac Lane, S. (1978). Categories for the working mathematician. New York: Springer Science & Business Media.

    Book  Google Scholar 

  • Macrae, I. J., Zhou, K., Li, F., Repic, A., Brooks, A. N., Cande, W. Z., et al. (2006). Structural basis for double-stranded RNA processing by Dicer. Science, 311, 195–198.

    Article  CAS  PubMed  Google Scholar 

  • Mattick, J. S. (2003a). Challenging the dogma: The hidden layer of non-protein-coding RNAs in complex organisms. BioEssays, 25, 930–939.

    Article  CAS  PubMed  Google Scholar 

  • Mattick, J. S. (2003b). Quoted by Gibbs, W.W. in the unseen genome: Beyond DNA. Scientific American, 289, 106–113.

    Google Scholar 

  • Maturana, H. R., & Varela, F. J. (1973). Autopoiesis and cognition: The realization of the living (p. 79). Dordrecht: D. Reidel Publishing Company.

    Google Scholar 

  • Maturana, H. R., & Varela, F. J. (1980). The cognitive process. Autopoiesis and cognition: The realization of the living (p. 13). New York: Springer Science & Business Media.

    Google Scholar 

  • Maturana, H. R., & Varela, F. J. (1988). The Tree of Knowledge (p. 242). Boston: New Science Library, Shambhala.

    Google Scholar 

  • McGann, J. (2014). A new republic of letters (p. 93). Harvard U: Cambridge. Copyright © 2014 by Jerome McGann.

    Google Scholar 

  • Melzack, R., & Wall, P. D. (1982). The Challenge of Pain. London: Penguin Books.

    Google Scholar 

  • Miller, J. G. (1978). Living systems. New York: Mcgraw-Hill. Extracts reprinted by permission of McGraw-Hill Education.

    Google Scholar 

  • Newman, E. A., & Zahs, K. R. (1997). Calcium waves in retinal glial cells. Science, 275, 844–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • op Akkerhuis, G. J. (2010). The operator hierarchy (Doctorate thesis), Radboud Universiteit, Nijmegen.

    Google Scholar 

  • Palatnik, J. F., Edwards, A., Wu, X., Schommer, C., Schwab, R., Carrington, J. C., et al. (2003). Control of leaf morphogenesis by microRNAs. Nature, 425, 257–263.

    Article  CAS  PubMed  Google Scholar 

  • Pearson, C. (1999). The semiotic paradigm. Presented at the 7th International Congress of the International Association of Semiotic Studies, Dresden, Germany, October 6–11, 1999.

    Google Scholar 

  • Peirce, C. S. (1931–1958). Collected papers of Charles Sanders Peirce. C.Hartshorne & P. Weiss (Eds) (vols 1–6); A.Burks (Ed) (vols 7–8). Cambridge: Belknap Press.

    Google Scholar 

  • Petrilli, S. (1999). Charles Morris’s biosemiotics. Semiotica, 127, 67–102.

    Google Scholar 

  • Prabhakar, S., Noonan, J. P., Pääbo, S., & Rubin, E. M. (2006). Accelerated evolution of conserved noncoding sequences in humans. Science, 314, 786.

    Article  CAS  PubMed  Google Scholar 

  • Rosen, R. (1969). Hierarchical organization in automata theoretic models of biological systems. In Whyte, A. G. Wilson, & D. Wilson (Eds), Hierarchical Structures (pp. 180–199). New York: Elsevier.

    Google Scholar 

  • Rosen, R. (1991). Life itself: A comprehensive inquiry into the nature, origin and fabrication of life. New York: Columbia U.P.

    Google Scholar 

  • Rosen, R. (1997). Transcript of a videotaped interview of Dr. Robert Rosen, done in July, 1997, in Rochester, New York, USA by Judith Rosen.

    Google Scholar 

  • Rosen, J., & Kineman, J. (2005). Anticipatory systems and time: A new look at Rosennean complexity. Systems Research and Behavioral Science, 22, 399–412.

    Article  Google Scholar 

  • Ross, W. D. (1951). Plato’s theory of ideas (p. 250). Oxford: Clarendon Press, Oxford.

    Google Scholar 

  • Sebeok, T. A. (1999). Towards a prehistory of biosemiotics. Semiotica, 127, 1–4.

    Article  Google Scholar 

  • Sebeok, T. A., & Umiker-Sebeok, J. (1992). Biosemiotics. The Semiotic Web 1991. Berlin: Mouton de Gruyter.

    Google Scholar 

  • Segal, E. (2006). Quoted by Wade, N. in The New York Times, July 25, 2006.

    Google Scholar 

  • Segal, E., Fondufe-Mittendorf, Y., Chen, L., Thastrom, A.-C., Field, Y., Moore, I. K., et al. (2006). A genomic code for nucleosome positioning. Nature, 442, 772–778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons, J. (2013). Did Galileo really sayAnd yet it moves”? http://www.historyrundown.com/did-galileo-really-say-and-yet-it-moves/.

  • Swenson, R. (1992a). Galileo, Babel, and autopoiesis (it’s turtles all the way down). International Journal of General Systems, 21, 267–269.

    Article  Google Scholar 

  • Swenson, R. (1992b). Autocatakinetics, yes—autopoiesis, no: Steps toward a unified theory of evolutionary ordering. International Journal of General Systems, 21, 207–208.

    Article  Google Scholar 

  • Thompson, E. (2007). Autopoiesis: The organization of the living. Mind in Life: Biology, Phenomenology, and the Sciences of Mind, pp. 91–127. Harvard University Press.

    Google Scholar 

  • Turing, A. M. (1950). Computing machinery and intelligence. Mind, New Series, 59, 433–460.

    Article  Google Scholar 

  • von Uexküll, T. (1992). Introduction: The sign theory of Jakob von Uexküll. Semiotica, 89, 279–315.

    Google Scholar 

  • Waddington, C. H. (1942). The epigenotype. Endeavour, 1, 18–20.

    Google Scholar 

  • Waterland, R. A., & Jirtle, R. L. (2003). Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Molecular and Cellular Biology, 23, 5293–5300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiener, N. (1954). The human use of human beings: Cybernetics and society. Boston: Houghton Mifflin.

    Google Scholar 

  • Winkler, W., Nahvi, A., & Breaker, R. R. (2002). Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature, 419, 952–956.

    Article  CAS  PubMed  Google Scholar 

  • Wolfe, C. (1998). Critical environments: Postmodern theory and the pragmatics of the ‘outside’, (pp. 62–63). Minnesota: University of Minnesota Press.

    Google Scholar 

  • Wolkenhauer, O. (2001). Systems biology: The reincarnation of systems theory applied in biology? Briefings in Bioinformatics, 2, 258–270.

    Article  CAS  PubMed  Google Scholar 

  • Yelin, R., Dahary, D., Sorek, R., Levanon, E. Y., Goldstein, O., Shoshan, A., et al. (2003). Widespread occurrence of antisense transcription in the human genome. Nature Biotechnology, 21, 379–386.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Cottam .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cottam, R., Ranson, W. (2017). And Yet It Moves. In: Bridging the Gap between Life and Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-74533-6_6

Download citation

Publish with us

Policies and ethics