Skip to main content

Anesthesia for Spinal Surgery in Children

  • Chapter
  • First Online:
Anesthesiology

Abstract

The evolution of pediatric anesthesia and pediatric spine surgery has had a parallel trajectory and as it stands, pediatric spine surgery has cemented itself as a cornerstone of most pediatric anesthesia practices. Certainly, the advancement of pediatric anesthesia has facilitated safe and effective care of these patients. In addition to scoliosis, spinal dysraphisms such as myelomeningocele and tethered cord frequently require surgical intervention. Many of these patients have multiple medical issues and pose distinct anatomic and physiologic challenges that affect preoperative, intraoperative, and postoperative anesthetic management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh D, Rath GP, Dash HH, Bithal PK. Anesthetic concerns and perioperative complications in repair of myelomeningocele: a retrospective review of 135 cases. J Neurosurg Anesthesiol. 2010;22:11–5.

    Article  PubMed  Google Scholar 

  2. Barois A. Respiratory problems in severe scoliosis. Bull Acad Natl Med. 1999;183(4):721–30.

    PubMed  CAS  Google Scholar 

  3. Salem MR, Klowden AJ. Anesthesia for orthopedic surgery. In: Gregory GA, editor. Pediatric anesthesia. New York: Churchill Livingstone; 2002. p. 617–61.

    Google Scholar 

  4. Yuan N, Skaggs DL, Dorey F, Keens TG. Preoperative predictors of prolonged postoperative mechanical ventilation in children following scoliosis repair. Pediatr Pulmonol. 2005;40(5):414–9.

    Article  PubMed  Google Scholar 

  5. Raw DA, Beattie JK, Hunter JM. Anaesthesia for spinal surgery in adults. Br J Anaesth. 2003;91:886–904.

    Article  PubMed  CAS  Google Scholar 

  6. DiCindio S, Arai L, McCulloch M, Sadacharam K, Shah SA, Gabos P, Dabney K, Theroux MC. Clinical relevance of echocardiogram in patients with cerebral palsy undergoing posterior spinal fusion. Paediatr Anaesth. 2015;25(8):840–5.

    Article  PubMed  Google Scholar 

  7. Edler A, Murray DJ, Forbes RB. Blood loss during posterior spinal fusion surgery in patients with neuromuscular disease: is there an increased risk? Paediatr Anaesth. 2003;13:818–22.

    Article  PubMed  Google Scholar 

  8. Florentino-Pineda I, Thompson GH, Poe-Kochert C, Huang RP, Haber LL, Blakemore LC. The effect of amicar on perioperative blood loss in idiopathic scoliosis: the results of a prospective, randomized double-blind study. Spine (Phila Pa 1976). 2004;29:233–8.

    Article  Google Scholar 

  9. Jevsevar DS, Karlin LI. The relationship between preoperative nutritional status and complications after an operation for scoliosis in patients who have cerebral palsy. J Bone Joint Surg Am. 1993;75:880–4.

    Article  PubMed  CAS  Google Scholar 

  10. McIntyre IW, Francis L, McAuliffe JJ. Transcranial motor-evoked potentials are more readily acquired than somatosensory-evoked potenitals in children younger than 6 years. Anesth Analg. 2016;122:212–8.

    Article  PubMed  Google Scholar 

  11. Szelényi A, Bueno de Camargo A, Deletis V. Neurophysiological evaluation of the corticospinal tract by D-wave recordings in young children. Childs Nerv Syst. 2003;19:30–4. Cracco JB, Cracco RQ. Spinal somatosensory evoked potentials: maturational and clinical studies. Ann N Y Acad Sci. 1982;388:526–37.

    PubMed  Google Scholar 

  12. Kurz A, Sessler DI, Lenhardt R. Study of Wound Infection and Temperature Group. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. N Engl J Med. 1996;334:1209–15.

    Article  PubMed  CAS  Google Scholar 

  13. Sloan TB. Anesthetics and the brain. Anesthesiol Clin North Am. 2002;20:265–92.

    Article  CAS  PubMed  Google Scholar 

  14. Samra SK, Vanderzant CW, Domer PA, Sackellares JC. Differential effects of isoflurane on human median nerve somatosensory evoked potentials. Anesthesiology. 1987;66:29–35.

    Article  PubMed  CAS  Google Scholar 

  15. Peterson DO, Drummond JC, Todd MM. Effects of halothane, enflurane, isoflurane, and nitrous oxide on somatosensory evoked potentials in humans. Anesthesiology. 1986;65:35–40.

    Article  PubMed  CAS  Google Scholar 

  16. McPherson RW, Mahla M, Johnson R, Traystman RJ. Effects of enflurane, isoflurane, and nitrous oxide on somatosensory evoked potentials during fentanyl anesthesia. Anesthesiology. 1985;62:626–33.

    Article  PubMed  CAS  Google Scholar 

  17. Schindler E, Müller M, Zickmann B, Osmer C, Wozniak G, Hempelmann G. Modulation of somatosensory evoked potentials under various concentrations of desflurane with and without nitrous oxide. J Neurosurg Anesthesiol. 1998;10:218–23.

    Article  PubMed  CAS  Google Scholar 

  18. Wolfe DE, Drummond JC. Differential effects of isoflurane/nitrous oxide on posterior tibial somatosensory evoked responses of cortical and subcortical origin. Anesth Analg. 1988;67:852–9.

    Article  PubMed  CAS  Google Scholar 

  19. Thees C, Scheufler KM, Nadstawek J, et al. Influence of fentanyl, alfentanil, and sufentanil on motor evoked potentials. J Neurosurg Anesthesiol. 1999;11:112–8.

    Article  CAS  PubMed  Google Scholar 

  20. Ubags LH, Kalkman CJ, Been HD, Drummond JC. Differential effects of nitrous oxide and propofol on myogenic transcranial motor evoked responses during sufentanil anaesthesia. Br J Anaesth. 1997;79:590–4.

    Article  PubMed  CAS  Google Scholar 

  21. Lo YL, Dan YF, Tan YE, et al. Intraoperative motor-evoked potential monitoring in scoliosis surgery: comparison of desflurane/nitrous oxide with propofol total intravenous anesthetic regimens. J Neurosurg Anesthesiol. 2006;18:211–4.

    Article  PubMed  Google Scholar 

  22. Lotto ML, Banoub M, Schubert A. Effects of anesthetic agents and physiologic changes on intraoperative motor evoked potentials. J Neurosurg Anesthesiol. 2004;16:32–42.

    Article  PubMed  Google Scholar 

  23. Bala E, Sessler DI, Nair DR, McLain R, Dalton JE, Farag E. Motor and somatosensory evoked potentials are well maintained in patients given dexmedetomidine during spine surgery. Anesthesiology. 2008;109:417–25.

    Article  PubMed  Google Scholar 

  24. Au KS, Northrup H, Allison-Koch A. Epidemiology and genetic aspects of spina bifida and other neural tube defects. Dev Disabil Res Rev. 2010;16:6–15.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Milunsky A, Jick H, Jick SS, Bruell CL, MacLaughlin DS, Rothman KJ, Willett W. Multivitamin/folic acid supplementation in early pregnancy reduces the prevalence of neural tube defects. JAMA. 1989;262(20):2847–52.

    Article  PubMed  CAS  Google Scholar 

  26. McLone DG, Knepper PA. The cause of Chiari II malformations: a unified theory. Pediatr Neurosci. 1989;15:1–12.

    Article  PubMed  CAS  Google Scholar 

  27. Fletcher JM, Copeland K, Frederick JA, Blaser SE, Kramer LA, Northrup H, Hannay HJ, Brandt ME, Francis DJ, Villarreal G, Drake JM, Laurent JP, Townsend I, Inwood S, Boudousquie A, Dennis M. Spinal lesion level in spina bifida: a source of neural and cognitive heterogeneity. J Neurosurg. 2005;102(3 Suppl):268–79.

    PubMed  Google Scholar 

  28. Dennis M, Salman MS, Juranek J, Fletcher JM. Cerebellar motor function in spina bifida meningomyelocele. Cerebellum. 2010;9(4):484–98.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dias MS. Neurosurgical causes of scoliosis in patients with myelomeningocele: an evidence-based literature review. J Neurosurg. 2005;103(1 Suppl):24–35.

    PubMed  Google Scholar 

  30. Samuelsson L, Eklöf O. Scoliosis in myelomeningocele. Acta Orthop Scand. 1988;59:122–7.

    Article  PubMed  CAS  Google Scholar 

  31. Hudgins RJ, Gilreath CL. Tethered spinal cord following repair of myelomeningocele. Neurosurg Focus. 2004;16(2):E7.

    Article  PubMed  Google Scholar 

  32. Tamburrini G, Frassanito P, Iakovaki K, Pignotti F, Rendeli C, Murolo D, Di Rocco C. Myelomeningocele: the management of the associated hydrocephalus. Childs Nerv Syst. 2013;29(9):1569–79.

    Article  PubMed  CAS  Google Scholar 

  33. Messing-Jünger M, Röhrig A. Primary and secondary management of the Chiari II malformation in children with myelomeningocele. Childs Nerv Syst. 2013;29(9):1553–62.

    Article  PubMed  Google Scholar 

  34. Rintoul NE, Sutton LN, Hubbard AM, Cohen B, Melchionni J, Pasquariello PS, Adzick NS. A new look at myelomeningoceles: functional level, vertebral level, shunting, and the implications for fetal intervention. Pediatrics. 2002;109(3):409–13.

    Article  PubMed  Google Scholar 

  35. Oren J, Kelly DH, Todres ID. Respiratory complications in patients with myelodysplasia and Arnold-Chiari malformation. Am J Dis Child. 1986;140:221–4.

    PubMed  CAS  Google Scholar 

  36. Wu YW, Croen LA, Henning L, Najjar DV, Schembri M, Croughan MS. Potential association between infertility and spinal neural tube defects in offspring. Birth Defects Res A Clin Mol Teratol. 2006;76(10):718–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Dias MS. Neurosurgical management of myelomeningocele (Spina Bifida). Pediatr Rev. 2005;26(2):50–9.

    Article  PubMed  Google Scholar 

  38. Pollack IF, Kinnunen D, Albright AL. The effect of early craniocervical decompression on functional outcome in neonates and young infants with myelodysplasia and symptomatic Chiari II malformations: results from a prospective series. Neurosurgery. 1996;38(4):703–10.

    Article  PubMed  CAS  Google Scholar 

  39. Attenello FJ, Tuchman A, Christian EA, Wen T, Chang KE, Nallapa S, Cen SY, Mack WJ, Krieger MD, McComb JG. Infection rate correlated with time to repair of open neural tube defects (myelomeningoceles): an institutional and national study. Childs Nerv Syst. 2016;32(9):1675–81.

    Article  PubMed  Google Scholar 

  40. Tarcan T, Onol FF, Ilker Y, Alpay H, Simşek F, Ozek M. The timing of primary neurosurgical repair significantly affects neurogenic bladder prognosis in children with myelomeningocele. J Urol. 2006;176(3):1161–5.

    Article  PubMed  Google Scholar 

  41. Conran AM, Kahana M. Anesthetic considerations in neonatal neurosurgical patients. Neurosurg Clin N Am. 1998;9(1):181–5.

    Article  PubMed  CAS  Google Scholar 

  42. Mellor DJ, Lerman J. Anesthesia for neonatal surgical emergencies. Semin Perinatol. 1998;22(5):363–79.

    Article  PubMed  CAS  Google Scholar 

  43. Ritter S, Tani LY, Shaddy RE, Minich LL. Are screening echocardiograms warranted for neonates with meningomyelocele? Arch Pediatr Adolesc Med. 1999;153:1264–6.

    Article  PubMed  CAS  Google Scholar 

  44. Bowman RM, Mclone DG, Grant JA, Tomita T. Spina bifida outcome: a 25-year prospective. Pediatr Neurosurg. 2001;34(3):114–20.

    Article  PubMed  CAS  Google Scholar 

  45. Talamonti G, D’Aliberti G, Colice M. Myelomeningocele: long-term neurosurgical treatment and follow-up in 202 patients. J Neurosurg. 2007;107(5 Suppl):368–86.

    PubMed  Google Scholar 

  46. Lew SM, Kothbauer KF. Tethered cord syndrome: an updated review. Pediatr Neurosurg. 2007;43(3):236–48.

    Article  PubMed  Google Scholar 

  47. Al-Holou WN, Muraszko KM, Garton HJ, Buchman SR, Maher CO. The outcome of tethered cord release in secondary and multiple repeat tethered cord syndrome. J Neurosurg Pediatr. 2009;4(1):28–36.

    Article  PubMed  Google Scholar 

  48. Maher CO, Goumnerova L, Madsen JR, Proctor M, Scott RM. Outcome following multiple repeated spinal cord untethering operations. J Neurosurg. 2007;106(6 Suppl):434–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Kandil D.O., M.P.H. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kandil, A., Rao, D.S., Mahmoud, M. (2018). Anesthesia for Spinal Surgery in Children. In: Goudra, B., et al. Anesthesiology. Springer, Cham. https://doi.org/10.1007/978-3-319-74766-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74766-8_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74765-1

  • Online ISBN: 978-3-319-74766-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics