Skip to main content

Platinum in Biomedical Applications

  • Chapter
  • First Online:
Biomedical Applications of Metals

Abstract

For a long time, platinum (Pt) is used in medicine because of its outstanding properties such as biocompatibility, electrical conductivity, radiopacity, and durability. Despite the high cost of the noble metal, its unique properties were exploited in a large number of medical devices. These include stents, catheters, pacemakers, defibrillators, cochlear implants, and many others. Pt compounds play an important role in cancer therapy. In the age of nanotechnology, the horizon of the potential applications of Pt was substantially expanded. Nanostructured Pt-based materials were proposed for producing electrodes with advanced characteristics embedded in implantable electronic devices and sensors for detection of biologically important molecules. Pt nanoparticles (PtNPs) are perspective for the treatment of the diseases related to oxidative stress. It is expected that nanoparticle formulations will reduce adverse effects of Pt-based anticancer drugs. In this chapter, we review the traditional and new fields of Pt application in medicine. Special attention is paid to the questions of in vivo biocompatibility and corrosion behavior of Pt implants. In conclusion, we summarize the benefits of Pt usage for future medicine and diagnostics and indicate the problems to be solved to give the green light for the Pt-based new products to get entry in medical market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed KBA, Raman T, Anbazhagan V (2016) Platinum nanoparticles inhibit bacteria proliferation and rescue zebrafish from bacterial infection. RSC Adv 6:44415–44424

    Article  Google Scholar 

  • Ahmeda F, Alib MJ, Kondapi AK (2014) Carboplatin loaded protein nanoparticles exhibit improve anti-proliferative activity in retinoblastoma cells. Int J Biol Macromol 70:572–582

    Article  Google Scholar 

  • Angelov SD, Koenen S, Jakobi J, Heissler HE, Alam M, Schwabe K, Barcikowski S, Krauss JK (2016) Electrophoretic deposition of ligand-free platinum nanoparticles on neural electrodes affects their impedance in vitro and in vivo with no negative effect on reactive gliosis. J Nanobiotechnol 14:3

    Article  Google Scholar 

  • Asharani PV, Xinyi N, Hande MP, Valiyaveettil S (2010) DNA damage and p53-mediated growth arrest in human cells treated with platinum nanoparticles. Nanomedicine 5:51–64

    Article  CAS  PubMed  Google Scholar 

  • Balas M, Constanda S, Duma-Voiculet A, Prodana M, Hermenean A, Pop S, Demetrescu I, Dinischiotu A (2016) Fabrication and toxicity characterization of a hybrid material based on oxidized and aminated MWCNT loaded with carboplatin. Toxicol In Vitro 37:189–200

    Article  CAS  PubMed  Google Scholar 

  • Balducci A, Wen Y, Zhang Y, Helfer BM, Hitchens TK, Meng WS, Wesa AK, Janjic JM (2010) Combination therapies for effective cancer treatment. Ther Deliv 1:323–334

    Article  Google Scholar 

  • Barrese JC, Aceros J, Donoghue JP (2016) Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates. J Neural Eng 13:026003

    Article  PubMed  PubMed Central  Google Scholar 

  • Bendale Y, Bendale V, Paul S (2017) Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis. Integr Med Res 6(2):141–148

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett J, Dubois C (2013) A novel platinum chromium everolimus-eluting stent for the treatment of coronary artery disease. Biologics 7(1):149–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Callaria M, Aldrich-Wright JR, de Souza PL, Stenzel MH (2014) Polymers with platinum drugs and other macromolecular metal complexes for cancer treatment. Prog Polym Sci 39:1614–1643

    Article  Google Scholar 

  • Campbell PK, Jones KF, Huber RJ, Horch KW, Normann RA (1991) A silicon-based, three-dimensional neural interface. IEEE Trans Biomed Eng 38:758–768

    Article  CAS  PubMed  Google Scholar 

  • Cheng Q, Liu Y (2017) Multifunctional platinum-based nanoparticles for biomedical applications. WIREs Nanomed Nanobiotechnol 9. https://doi.org/10.1002/wnan.1410

  • Chwalibog A, Sawosz E, Hotowy A, Szeliga J, Mitura S, Mitura K, Grodzik M, Orlowski P, Sokolowska A (2010) Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomed 5:1085–1094

    Article  Google Scholar 

  • Colombo E, Feyen P, Antognazza MR, Lanzani G, Benfenati F (2016) Nanoparticles: a challenging vehicle for neural stimulation. Front Neurosci 10:105

    Article  PubMed  PubMed Central  Google Scholar 

  • Colic M, Stamenkovic D, Anzel I, Lojen G, Rudolf R (2009) The influence of the microstructure of high noble gold-platinum dental alloys on their corrosion and biocompatibility in vitro. Gold Bull 42(1):34–47

    Article  CAS  Google Scholar 

  • Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378

    Article  CAS  PubMed  Google Scholar 

  • Dimond AM, Kaechele LE, Jurist JM, Crandall PH (1970) Brain tissue reaction to some chronically implanted metals. J Neurosurg 33:574–580

    Article  Google Scholar 

  • Donaldson PE, Donaldson ND, Brindley GS (1985) Life of Pt and Pt–Ir stimulating electrodes in neurological prostheses. Med Biol Eng Comput 23:84–86

    Article  CAS  PubMed  Google Scholar 

  • Duan X, He C, Kron SJ, Lin W (2016) Nanoparticle formulations of cisplatin for cancer therapy. WIREs Nanomed Nanobiotechnol 8(5):776–791

    Article  CAS  Google Scholar 

  • Elder A, Yang H, Gwiazda R, Teng X, Thurston S, He H, Oberdörster G (2007) Testing nanomaterials of unknown toxicity: an example based on platinum nanoparticles of different shapes. Adv Mater 19:3124–3129

    Article  CAS  Google Scholar 

  • Gedde LA, Roeder R (2003) Criteria for the selection of materials for implanted electrodes. Ann Biomed Eng 33:879–890

    Article  Google Scholar 

  • Gehrke H, Pelka J, Hartinger C, Blank H, Bleimund F, Schneider R, Gerthsen D, Bräse S, Crone M, Türk M, Marko D (2011) Platinum nanoparticles and their cellular uptake and DNA platination at non-cytotoxic concentrations. Arch Toxicol 85:799–812

    Article  CAS  PubMed  Google Scholar 

  • Givan DA (2014) Precious metal alloys for dental applications. In: Baltzer N, Copponnex T (eds) Precious metals for biomedical applications. Woodhead Publishing is an imprint of Elsevier, Cambridge, UK, pp 109–129

    Chapter  Google Scholar 

  • Gopal J, Hasan N, Manikandan M, Wu HF (2013) Bacterial toxicity/compatibility of platinum nanospheres, nanocuboids and nanoflowers. Sci Rep 3:1260

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamaguchi T, Kato K, Yasui H, Morizane C, Ikeda M, Ueno H, Muro K, Yamada Y, Okusaka T, Shirao K, Shimada Y, Nakahama H, Matsumura Y (2007) A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer 97:170–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamasaki T, Kashiwagi T, Imada T, Nakamichi N, Aramaki S, Toh K, Morisawa S, Shimakoshi H, Hisaeda Y, Shirahata S (2008) Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir 24:7354–7364

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa K, Sano S (2009) Platinum nanoparticle catalyst scavenges hydrogen peroxide generated from hydroquinone. Bull Chem Soc Jpn 82:1299–1303

    Article  CAS  Google Scholar 

  • Hochberg LR, Donoghue JP (2006) Sensors for brain–computer interfaces. IEEE Eng Med Biol Mag 25:32–38

    Article  PubMed  Google Scholar 

  • Hoeschele JD (2009) In remembrance of Barnett Rosenberg. Dalton Trans 0:10648–10650

    Google Scholar 

  • Horie M, Kato H, Endoh S, Fujita K, Nishio K, Komaba LK, Fukui H, Nakamura A, Miyauchi A, Nakazato T, Kinugasa S, Yoshida Y, Hagihara Y, Morimoto Y, Iwahashi H (2011) Evaluation of cellular influences of platinum nanoparticles by stable medium dispersion. Metallomics 3:1244–1252

    Article  CAS  PubMed  Google Scholar 

  • Hu CM, Aryal S, Zhang L (2010) Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv 1:323–334

    Article  CAS  PubMed  Google Scholar 

  • Johnstone TC, Alexender SM, Lin W, Lippard SJ (2014a) Effects of monofunctional platinum agents on bacterial growth—a retrospective study. J Am Chem Soc 136(1):116–118

    Article  CAS  PubMed  Google Scholar 

  • Johnstone TC, Oark GY, Lippard S (2014b) Understanding and improving platinum anticancer drugs phenanthriplatin. Anticancer Res 34(1):471–476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnstone TC, Suntharalingam K, Lippard SJ (2016) The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem Rev 116:3436–3486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorge C, Dubois C (2015) Clinical utility of platinum chromium bare-metal stents in coronary heart disease. Med Devices: Evid Res 8:359–367

    CAS  Google Scholar 

  • Kang X, Xiao HH, Song HQ, Jing XB, Yan LS, Qi RG (2015) Advances in drug delivery system for platinum agents based combination therapy. Cancer Biol Med 12:362–374

    PubMed  PubMed Central  Google Scholar 

  • Karanam V, Marslin G, Krishnamoorthy B, Chellan V, Siram K, Natarajan T, Bhaskar B, Franklin G (2015) Poly(ε-caprolactone) nanoparticles of carboplatin: preparation, characterization and in vitro cytotoxicity evaluation in U-87 MG cell lines. Colloids Surf B 130:48–52

    Article  CAS  Google Scholar 

  • Khan MA, Zafaryab M, Mehdi SH, Quadri J, Rizvi MM (2017) Characterization and carboplatin loaded chitosan nanoparticles for the chemotherapy against breast cancer in vitro studies. Int J Biol Macromol 97:115–122

    Article  CAS  PubMed  Google Scholar 

  • Killer M, Arthur AS, Barr JD, Richling B, Cruise GM (2010) Histomorphology of thrombus organization, neointima formation, and foreign body response in retrieved human aneurysms treated with hydrocoil devices. J Biomed Mater Res Part B: Appl Biomater 94B:486–492

    CAS  Google Scholar 

  • Kim DW, Kim SY, Kim HK, Kim SW, Shin SW, Kim JS, Park K, Lee MY, Heo DS (2007) Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol 18:2009–2014

    Article  PubMed  Google Scholar 

  • Kim J, Shirasawa T, Miyamoto Y (2010) The effect of TAT conjugated platinum nanoparticles on lifespan in a nematode Caenorhabditis elegans model. Biomaterials 31:5849–5854

    Article  CAS  PubMed  Google Scholar 

  • Knosp H, Holliday RJ, Corti CW (2003) Gold in dentistry: alloys, uses and performance. Gold Bull 36(3):93–102

    Article  Google Scholar 

  • Konieczny P, Goralczyk AG, Szmyd R, Skalniak L, Koziel J, Filon FL, Crosera M, Cierniak A, Zuba-Surma EK, Borowczyk J, Laczna E, Drukala J, Pyza E, Semik D, Woznicka O, Klein A, Jura J (2013) Effects triggered by platinum nanoparticles on primary keratinocytes. Int J Nanomed 8:3963–3975

    Google Scholar 

  • Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim SB, Rha SY, Lee MY, Ro J (2008) Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 108:241–250

    Article  CAS  PubMed  Google Scholar 

  • Li J, Lv L, Zhang G, Zhou X, Shen A, Hu J (2016) Core shell Fructus Broussonetia-like Au@ Ag@ Pt nanoparticles as highly efficient peroxidase mimetics for supersensitive resonance-enhanced Raman sensing. Anal Methods 8:2097–2105

    Article  CAS  Google Scholar 

  • Makharza S, Vittorio O, Cirillo G, Oswald S, Hinde E, Kavallaris M, Büchner B, Mertig M, Hampel S (2015) Graphene oxide–Gelatin nanohybrids as functional tools for enhanced carboplatin activity in neuroblastoma cells. Pharm Res 32:2132–2143

    Article  CAS  PubMed  Google Scholar 

  • Manikandan M, Hasan N, Wu HF (2013) Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells. Biomaterials 34:5833–5842

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, Shirao K, Okusaka T, Ueno H, Ikeda M, Watanabe N (2004) Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 91:1775–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McArdle BF (2011) Clinical indications for a composite-metal PFM restorative. Cosmet Dent 1:16–20

    Google Scholar 

  • McWhinney SR, Goldberg RM, McLeod HL (2009) Platinum neurotoxicity pharmacogenetics. Mol Cancer Ther 8:10–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menown IBA, Noad R, Garcia EJ, Meredith I (2010) The platinum chromium element stent platform: from alloy, to design, to clinical practice. Adv Ther 27(3):29–141

    Google Scholar 

  • Min Y, Caster JM, Eblan MJ, Wang AZ (2015) Clinical translation of nanomedicine. Chem Rev 115:11147–11190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moglianetti M, De Luca E, Pedone D, Marotta R, Catelani T, Sartori B, Amenitsch H, Retta SF, Pompa PP (2016) Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model. Nanoscale 8:3739–3752

    Article  CAS  PubMed  Google Scholar 

  • Nadol JB Jr, O’Malley JT, Burgess BJ, Galler D (2014) Cellular immunologic responses to cochlear implantation in the human. Hear Res 318:11–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nellore J, Pauline C, Amarnath K (2013) Bacopa monnieri phytochemicals mediated synthesis of platinum nanoparticles and its neurorescue effect on 1-methyl 4-phenyl 1,2,3,6 tetrahydropyridine-induced experimental Parkinsonism in zebrafish. J Neurodegener Dis 2013:972391

    PubMed  PubMed Central  Google Scholar 

  • NIST (2017) Handbook 44. Appendix C. General tables of units of measurement. Available from: https://www.nist.gov/file/330151pdf

  • O’Malley JT, Burgess BJ, Galler D, Nadol JB (2017) Foreign body response to silicone in cochlear implant electrodes in the human. Otol Neurotol 38(7):970–977

    Article  PubMed  Google Scholar 

  • Onizawa S, Aoshiba K, Kajita M, Miyamoto Y, Nagai A (2009) Platinum nanoparticle antioxidants inhibit pulmonary inflammation in mice exposed to cigarette smoke. Pulm Pharmacol Ther 22:340–349

    Article  CAS  PubMed  Google Scholar 

  • Pareek V, Bhargava A, Gupta R, Jain N, Panwar J (2017) Synthesis and applications of noble metal nanoparticles: a review. Adv Sci Eng Med 9(7):527–544

    Article  Google Scholar 

  • Park EJ, Kim H, Kim Y, Park K (2010) Intratracheal instillation of platinum nanoparticles may induce inflammatory responses in mice. Arch Pharmacol Res 33:727–735

    Article  CAS  Google Scholar 

  • Pedone D, Moglianetti M, De Luca E, Bardi G, Pompa PP (2017) Platinum nanoparticles in nanobiomedicine. Chem Soc Rev 46:4951–4975

    Article  CAS  PubMed  Google Scholar 

  • Pelka J, Gehrke H, Esselen M, Türk M, Crone M, Bräse S, Muller T, Blank H, Send W, Zibat V, Brenner P, Schneider R, Gerthsen D, Marko D (2009) Cellular uptake of platinum nanoparticles in human colon carcinoma cells and their impact on cellular redox systems and DNA integrity. Chem Res Toxicol 22:649–659

    Article  CAS  PubMed  Google Scholar 

  • PGM market report (2017) May (2017). Johnson Matthey

    Google Scholar 

  • Plummer R, Wilson RH, Calvert H, Boddy AV, Griffin M, Sludden J, Tidy MJ, Eatock M, Pearson DG, Ottley CJ, Matsumura Y, Kataoka K, Nishiya T (2011) A phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br J Cancer 104:593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radovsky AS, Van-Vlect JS (1989) Effects of dexamethasone elution on tissue reaction around stimulating electrodes of endocardial pacing leads in dogs. Am Heart J 117:1288–1298

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg B, VanCamp L, Trosko JE, Mansour VH (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222:385–386

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg B (1999) In: Lippert B (ed) Cisplatin: chemistry and biochemistry of a leading anticancer drug. Verlag Helvetica Chimica Acta, Zürich, pp 1–27

    Google Scholar 

  • Sadhukha T, Prabha S (2014) Encapsulation in nanoparticles improves anti-cancer efficacy of carboplatin. AAPS Pharm Sci Technol 5:1029–1038

    Article  Google Scholar 

  • Sakaue Y, Kim J, Miyamoto Y (2010) Effects of TAT-conjugated platinum nanoparticles on lifespan of mitochondrial electron transport complex I-deficient Caenorhabditis elegans, nuo-1. Int J Nanomed 5:687–695

    Article  CAS  Google Scholar 

  • Shah KG, Tolosa VM, Tooker AC, Felix SH and Pannu SS (2013) Improved chronic neural stimulation using high surface area platinum electrodes. In: 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Osaka, 2013, pp 1546–1549

    Google Scholar 

  • Shaili E (2014) Platinum anticancer drugs and photochemotherapeutic agents: recent advances and future developments. Sci Prog 97:20–40

    Article  CAS  PubMed  Google Scholar 

  • Shepherd BK, Clark GM (1991) Scanning electron microscopy of platinum scala tympani electrodes following chronic stimulation in patients. Biomaterials 12(4):417–423

    Article  CAS  PubMed  Google Scholar 

  • Shibuya S, Ozawa Y, Watanabe K, Izuo N, Toda T, Yokote K et al (2014) Palladium and platinum nanoparticles attenuate aging-like skin atrophy via antioxidant activity in mice. PLoS ONE 9(10):e109288

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith GH (1979) New drugs released in 1978. Nurse Pract 4:35–41

    Article  Google Scholar 

  • Spiers K, Cardamone T, Furness JB, Clark JCM, Patrick JF, Clark GM (2016) An X-ray fluorescence microscopic analysis of the tissue surrounding the multi-channel cochlear implant electrode array. Cochlear Implants Int Interdisc J 17(3):129–131

    Article  Google Scholar 

  • Stanca SE, Hänschke F, Ihring A, Zieger G, Dellith J, Kessler E, Meyer HG (2017) Chemical and electrochemical synthesis of platinum black. Sci Rep 7:1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stokes KB, Bornzin GA, Weabusch WA (1983) A steroid-electing, low-threshold, low polarizing electrode. In: Steinkoff D (ed) Cardiac Pacing. Verlag, Darnstadt, p 369

    Google Scholar 

  • Takmakov PA (2017) Electrochemistry of a robust neural interface. Electrochem Soc Interface 26(3):49–51

    Article  PubMed  PubMed Central  Google Scholar 

  • Teow Y, Valiyaveettil S (2010) Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles. Nanoscale 2:2607–2613

    Article  CAS  PubMed  Google Scholar 

  • Tsukioka Y, Matsumura Y, Hamaguchi T, Koike H, Moriyasu F, Kakizoe T (2002) Pharmaceutical and biomedical differences between micellar doxorubicin (NK911) and liposomal doxorubicin (Doxil). Jpn J Cancer Res 93:1145–1153

    Article  CAS  PubMed  Google Scholar 

  • Uchino H, Matsumura Y, Negishi T, Koizumi F, Hayashi T, Honda T, Nishiyama N, Kataoka K, Naito S, Kakizoe T (2005) Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br J Cancer 93:678–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uivarosi V, Olar R and Badea M (2017) Nanoformulation as a tool for improve the pharmacological profile of platinum and ruthenium anticancer drugs. In: Akitsu T (ed) Descriptive inorganic chemistry researches of metal compounds. ISBN 978-953-51-3398-8, Print ISBN 978-953-51-3397-1, Published: 23 Aug 2017 under CC BY 3.0 license. © The Author(s)

    Google Scholar 

  • Vasani R, Kawashima I, Ziebert GJ, Berzins DW (2009) Metal-ceramic interface evaluation of a gold-infiltrated alloy. J Prosthodont 18:560–565

    Article  PubMed  Google Scholar 

  • Vitale F, Summerson SR, Aazhang B, Kemere C, Pasquali M (2015) Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano 9:4465

    Article  CAS  PubMed  Google Scholar 

  • Wani WA, Prashar S, Shreaz S, Gómez-Ruiz S (2016) Nanostructured materials functionalized with metal complexes: in search of alternatives for administering anticancer metallodrugs. Coord Chem Rev 312:67–98

    Article  CAS  Google Scholar 

  • Wheate NJ, Walker S, Craig GE, Oun R (2010) The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans 39:J8113–J8127

    Article  Google Scholar 

  • WHO (2017) The top 10 causes of death. Fact sheet Available from: http://www.who.int/mediacentre/factsheets/fs310/en/

  • Woodward BK (2014) Platinum group metals (PGMs) for permanent implantable electronic devices. In: Baltzer N, Copponnex T (eds) Precious metals for biomedical applications. Woodhead Publishing is an imprint of Elsevier, Cambridge, UK, pp 130–147

    Chapter  Google Scholar 

  • Yamagishi Y, Watari A, Hayata Y, Li X, Kondoh M, Tsutsumi Y, Yagi K (2013) Hepatotoxicity of sub-nanosized platinum particles in mice. Die Pharmazie-Int J Pharm Sci 68:178–182

    CAS  Google Scholar 

  • Ye H, Liu Y, Chhabra A, Lilla E, Xia X (2017) Polyvinylpyrrolidone (PVP)-capped Pt nanocubes with superior peroxidase-like activity. Chem Nano Mat 3:33–38

    CAS  Google Scholar 

  • Yoshihisa Y, Honda A, Zhao QL, Makino T, Abe R, Matsui K, Shimizu H, Miyamoto Y, Kondo T, Shimizu T (2010) Protective effects of platinum nanoparticles against UV-light-induced epidermal inflammation. Exp Dermatol 19:1000–1006

    Article  CAS  PubMed  Google Scholar 

  • Yoo EH, Lee SY (2010) Glucose biosensors: an overview of use in clinical practice. Sensors 10:4558–4576

    Article  PubMed  PubMed Central  Google Scholar 

  • Young AT, Cornwell N, Daniele MA (2017) Neuro-nano interfaces: utilizing Nano-coatings and nanoparticles to enable next-generation electrophysiological recording, neural stimulation, and biochemical modulation. Adv Funct Mater 2017:1700239

    Article  Google Scholar 

  • Zhao Y, Ye C, Liu W, Chen R, Jiang X (2014) Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application. Angew Chem Int Ed 53:8127–8131

    Article  CAS  Google Scholar 

  • Zhao Z, Gong R, Zheng L, Wang J (2016) In vivo neural recording and electrochemical performance of microelectrode arrays modified by rough-surfaced AuPt alloy nanoparticles with nanoporosity. Sensors 16:1851

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Sinitsyna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinitsyna, O., Paralikar, P., Pandit, R., Rai, M. (2018). Platinum in Biomedical Applications. In: Rai, M., Ingle, A., Medici, S. (eds) Biomedical Applications of Metals. Springer, Cham. https://doi.org/10.1007/978-3-319-74814-6_7

Download citation

Publish with us

Policies and ethics