Skip to main content

Flavonoids (Antioxidants Systems) in Higher Plants and Their Response to Stresses

  • Chapter
  • First Online:
Antioxidants and Antioxidant Enzymes in Higher Plants

Abstract

Flavonoids are a diverse group of secondary metabolites with a wide range of roles in mechanisms relating to UV protection, insect attraction, pathogen defense, symbiosis, variation of flower color, male fertility, pollination, allelopathy and auxin transport. Except bryophytes and pteridophytes, flavonoids are found only in higher plants. Flavonoids act as an antioxidative agent and scavenge reactive oxygen species (ROS), which are generated in plants during biotic and abiotic stresses. The ROS prevention by flavonoids is achieved through the inhibition of ROS-generating enzymes, the recycling of other antioxidants and the chelation of transition metal ions. Flavonoids are considered to be a secondary antioxidant system since they complement the function of other ROS scavenging systems when the reduction in the activities of antioxidant enzymes. This chapter describes the role of flavonoids in response to various stresses in higher plants.

Venkidasamy Baskar and Rajendran Venkatesh are equally contributed to this chapter

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah SB, Aung B, Amyot L, Lalin I, Lachaal M, Karray-Bouraoui N, Hannoufa A (2016) Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiol Plant 38:72–84

    Article  Google Scholar 

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Biricolti S, Guidi L, Ferrini F, Fini A, Tattini M (2011) The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. J Plant Physiol 168:204–212

    Article  CAS  PubMed  Google Scholar 

  • Agrawal GK, Rakwal R, Tamogami S, Yonekura M, Kubo A, Saji H (2002) Chitosan activates defense/stress response(s) in the leaves of Oryza sativa seedlings. Plant Physiol Biochem 40:1061–1069

    Article  CAS  Google Scholar 

  • Aguilera J, Dummermuth A, Karsten U, Schriek R, Wiencke C (2002) Enzymatic defenses against photooxidative stress induced by ultraviolet radiation in Arctic marine macroalgae. Polar Biol 25:432–441

    Google Scholar 

  • Ali RM, Singh N, Shohael AM, Hahn EJ, Paek KY (2006) Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress. Plant Sci 17:147–154

    Article  Google Scholar 

  • Arcas MC, Botia JM, Ortuno AM, del Rio JA (2000) UV irradiation alters the levels of flavonoids involved in the defence mechanism of Citrus aurantium fruits against Peniillium digitatum. Eur J Plant Pathol 106:617–622

    Article  CAS  Google Scholar 

  • Babu TS, Akhtar TA, Lampi MA, Tripuranthakam S, Dixon DG, Greenberg BM (2003) Similar stress responses are elicited by copper and ultraviolet radiation in the aquatic plant Lemna gibba: Implication of reactive oxygen species as common signals. Plant Cell Physiol 44:1320–1329

    Article  CAS  PubMed  Google Scholar 

  • Barry KM, Davies NW, Mohammed CL (2002) Effect of season and different fungi on phenolics in response to xylem wounding and inoculation in Eucalyptus nitens. Forest Pathol 32:163–178

    Article  Google Scholar 

  • Baskar V, Gururani M, Yu J, Park SW (2012) Engineering glucosinolates in plants: current knowledge and potential uses. Appl Biochem Biotechnol 168:1694–1717

    Article  CAS  PubMed  Google Scholar 

  • Beckman CH (2000) Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol Mol Plant Pathol 57:101–110

    Article  CAS  Google Scholar 

  • Berli FJ, Moreno D, Piccoli P, Hespanhol-Viana L, Silva MF, Bressan-Smith R, Cavagnaro JB, Bottini R (2010) Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant, Cell Environ 33:1–10

    CAS  Google Scholar 

  • Betz GA, Gerstner E, Stich S, Winkler B, Welzl G, Kremmer E, Langebartels C, Heller W, Sandermann H, Ernst D (2009) Ozone affects shikimate pathway genes and secondary metabolites in saplings of European beech (Fagus sylvatica L.) grown under greenhouse conditions. Trees 23:539–555

    Article  Google Scholar 

  • Bilger W, Rolland M, Nybakken L (2007) UV screening in higher plants induced by low temperature in the absence of UV-B radiation. Photochem Photobiol Sci 6:190–195

    Article  CAS  PubMed  Google Scholar 

  • Blount JW, Dixon RA, Paiva NL (1992) Stress responses in alfalfa (Medicago sativa L.) XVI. Antifungal activity of medicarpin and its biosynthetic precursors; implications for the genetic manipulation of stress metabolites. Physiol Mol Plant Pathol 41:333–349

    Article  CAS  Google Scholar 

  • Brown JE, Khodr H, Hider RC, Rice-Evans CA (1998) Structural dependence of flavonoid interactions with Cu2+ ions: implication for their antioxidant properties. Biochem J 330:1173–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellarin S, Matthews MA, Gaspero GD, Gambetta GA (2007a) Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 227:101–112

    Article  CAS  PubMed  Google Scholar 

  • Castellarin S, Pfeiffer A, Sivilotti P, Degan M, Peterlunger E, di Gaspero G (2007b) Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant, Cell Environ 30:1381–1399

    Article  CAS  Google Scholar 

  • del Rio JA, Arcas MC, Botia JM, Baidez AG, Fuster MD, Ortuno A (2000) Involvement of phenolic compounds in the antifungal defense mechanisms of Olea europaea L. and Citrus sp. Recent Res Dev J Agric Food Chem 4:331–341

    Google Scholar 

  • del Rio JA, Baidez AG, Botia JM, Ortuno A (2003) Enhancement of phenolic compounds in olive plants (Olea europaea L.) and their influence on resistance against Phytophthora sp. Food Chem 83:75–78

    Article  Google Scholar 

  • di Ferdinando M, Brunetti C, Fini A, Tattini M (2012) Flavonoids as antioxidants in plants under abiotic stresses. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, pp 159–179

    Google Scholar 

  • Dressel A, Hemleben V (2009) Transparent Testa Glabra 1 (TTG1) and TTG1-like genes in Matthiola incana R. Br. and related Brassicaceae and mutation in the WD-40 motif. Plant Biol 11:204–212

    Article  CAS  PubMed  Google Scholar 

  • Fofana B, McNally DJ, Labbe C, Boulanger R, Benhamou N, Seguin A, Belanger RR (2002) Milsana-induced resistance in powdery mildew-infected cucumber plants correlates with the induction of chalcone synthase and chalcone isomerase. Physiol Mol Plant Pathol 61:121–132

    Article  CAS  Google Scholar 

  • Gallet C, Despres L, Tollenaere C (2004) Phenolic response of Trollius europaeus to Chiastocheta invasion. Polyph Comm 759–760

    Google Scholar 

  • Goff SA, Klein TM, Roth BA, Fromm ME, Cone KC, Radicella JP, Chandler VP (1990) Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues. EMBO J 9:2517–2522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gondor OK, Janda T, Soos V, Pal M, Majlath I, Adak MK, Balazs E, Szalai G (2016) Salicylic acid induction of flavonoid biosynthesis pathways in wheat varies by treatment. Front Plant Sci 7:1447

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez A, Ortuno A, del Rio J, Botia JM, Fuster MD, Gomez P, Frias V (2001) Tylose formation and changes in phenolic compounds of grape roots infected with Phaeomoniella chlamydospora and Phaeoacremonium species. Phytopathol Mediterr 40:394–399

    Google Scholar 

  • Grayer RJ, Harborne JB (1994) A survey of antifungal compounds from higher plants, 1982–1993. Phytochemistry 37:19–42

    Article  CAS  Google Scholar 

  • Greenberg BM, Wilson MI, Huang XD, Duxbury CL, Gerhardt KE, Gensemer RW (1997) The effects of ultraviolet-B radiation on higher plants. In: Wang W, Gorsuch JW, Hughes JS (eds) Plants for environmental studies. CRC Press, Boca Raton, pp 1–36

    Google Scholar 

  • Hannah MA, Weise D, Freund S, Fiehn O, Heyer AG, Hincha DK (2006) Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol 142:98–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haraguchi H, Tanimoto K, Tamura Y, Mizutani K, Kinoshita T (1998) Mode of antibacterial action of retrochalcones from Glycyrrhiza inflata. Phytochemistry 48:125–129

    Article  CAS  PubMed  Google Scholar 

  • He X, Huang W, Chen W, Dong T, Liu C, Chen Z, Xu S, Ruan Y (2009) Changes of main secondary metabolites in leaves of Ginkgo biloba in response to ozone fumigation. J Environ Sci 21:199–203

    Article  CAS  Google Scholar 

  • Hernandez I, Alegre L, Munne-Bosch S (2004) Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean filed conditions. Tree Physiol 24:1303–1311

    Article  CAS  PubMed  Google Scholar 

  • Hernandez I, Alegre L, Breusegam FV, Munne-Bosch S (2009) How relevant are flavonoids as antioxidants in plants? Trend Plant Sci 14:125–312

    Article  CAS  Google Scholar 

  • Hichri I, Barrieu F, Boga J, Kappel C, Delrot S, Lauvergeat V (2010) Recent advances in the transcriptional regulation of the flavonoids biosynthetic pathway. J Exp Bot 62:2465–2483

    Article  Google Scholar 

  • Huang X, Yao J, Zhao Y, Xie D, Xu XZ (2016) Efficient rutin and quercetin biosynthesis through flavonoids related gene expression in Fagopyrum tataricum Gaertn. Hairy root cultures with UV-B irradiation. Front Plant Sci 7:63

    PubMed  PubMed Central  Google Scholar 

  • lzbianska K, Arasimowicz-Jelonek M, Deckert J (2014) Phenylpropanoid pathway metabolites promote tolerance response of lupine roots to lead stress. Ecotoxicol Environ Saf 110:61–67

    Article  Google Scholar 

  • Jenkins GI (2013) Phtotmorphogenic responses of plants to UV-B radiation. American Society for Photobiology. http://photobiology.info/Jenkins.html. (Downloaded on 21.10.2017)

  • Kangasjarvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defence system induced by ozone. Plant, Cell Environ 17:783–794

    Article  CAS  Google Scholar 

  • Kangatharalingam N, Pierce ML, Bayles MB, Essenberg M (2002) Epidermal anthocyanin production as an indicator of bacterial blight resistance in cotton. Physiol Mol Plant Pathol 61:189–195

    Article  CAS  Google Scholar 

  • Korn M, Peterek S, Petermock H, Heyer AG, Hincha DK (2008) Heterosis in the freezing tolerance, and sugar and flavonoid contents of crosses between Arabidopsis thaliana accessions of widely varying freezing tolerance. Plant, Cell Environ 31:313–327

    Article  Google Scholar 

  • Kováĉik J, Klejdus B, Baĉkor M (2009) Phenolic metabolism of Matricaria chamomilla plants exposed to nickel. J Plant Physiol 166:1460–1464

    Article  PubMed  Google Scholar 

  • Ku KM, Juvik JA (2013) Environmental stress and methyl jasmonate-mediated changes in flavonoid concentrations and antioxidant activity in broccoli florets and kale leaf tissues. Horticult Sci 48:996–1002

    CAS  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J Article ID:162750

    Google Scholar 

  • Kurepa J, Shull TE, Smalle JA (2016) Quercetin feeding protects plants against oxidative stress. F1000Res 5:2430

    Google Scholar 

  • Lama AD, Kim J, Martiskainen O, Klemola T, Salminen JP, Tyystjarvi E, Niemeka P, Vuorisalo T (2016) Impacts of simulated drought stress and artificial damage on concentrations of flavonoids in Jatropha curcas (L.), a biofuel shrub. J Plant Res 129:1141–1150

    Article  CAS  PubMed  Google Scholar 

  • Lattanzio V (2003) Bioactive polyphenols: their role in quality and storability of fruit and vegetables. J App Bot 77:128–146

    CAS  Google Scholar 

  • Lattanzio V, Cardinali A, Palmieri S (1994) The role of phenolics in the postharvest physiology of fruits and vegetables: browning reactions and fungal diseases. Ital J Food Sci 1:3–22

    Google Scholar 

  • Martinez V, Mestre TC, Rubio F, Girones-Vilaplana A, Moreno DA, Mittler R, Rivero RM (2016) Accumulation of flavonols over hydroxy cinnamic acids favors oxidative damage protection under abiotic stress. Front Plant Sci 7:838

    Article  PubMed  PubMed Central  Google Scholar 

  • McNally DJ, Wurms KV, Labbe C, Belanger RR (2003) Synthesis of C-glycosyl flavonoid phytoalexins as a site-specific response to fungal penetration in cucumber. Physiol Mol Plant Pathol 63:293–303

    Article  CAS  Google Scholar 

  • Melidou M, Riganakos K, Galaris D (2005) Protection against nuclear DNA damage offered by fl avonoids in cells exposed to hydrogen peroxide: the role of iron chelation. Free Radical Biol Med 39:1591–1600

    Article  CAS  Google Scholar 

  • Middleton EJ (1998) Effect of plant flavonoids on immune and inflammatory cell function. Adv Exp Med Biol 439:175–182

    Article  CAS  PubMed  Google Scholar 

  • Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19:16240–16265

    Article  PubMed  Google Scholar 

  • Miranda L, Maier CS, Stevens JF (2012) Flavonoids. In: eLS. Wiley, Chichester

    Google Scholar 

  • Mishra AK, Mishra A, Kehri HK, Sharma B, Pandey AK (2009) Inhibitory activity of Indian spice plant Cinnamomum zeylanicum extracts against Alternaria solani and Curvularia lunata, the pathogenic dematiaceous moulds. Ann Clin Microbiol Antimicrob 8:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Mustafa MG (1990) Biochemical basis of ozone toxicity. Free Radical Biol Med 9:245–265

    Article  CAS  Google Scholar 

  • Naoumkina MA, Zhao Q, Gallego-Giraldo L, Dai X, Zhao PX, Dixon RA (2010) Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol 11:829–846

    CAS  PubMed  Google Scholar 

  • Olsen KM, Slimestad R, Lea US, Brede C, Løvdal T, Ruoff P, Verheul M, Lillo C (2009) Temperature and nitrogen effects on regulators and products of the flavonoid pathway: experimental and kinetic model studies. Plant, Cell Environ 32:286–299

    Article  CAS  Google Scholar 

  • Padmavati M, Sakthivel N, Thara KV, Reddy AR (1997) Differential sensitivity of rice pathogens to growth inhibition by flavonoids. Phytochemistry 46:499–502

    Article  CAS  Google Scholar 

  • Paolacci AR, D’ovidio R, Marabottini R, Nali Lorenzini G, Abanavoli MR, Badiani M (2001) Ozone induces a differential accumulation of phenylalanine ammonialyase, chalcone synthase and chalcone isomerase RNA transcripts in sensitive and resistant bean cultivars. Aust J Plant Physiol 28:425–428

    CAS  Google Scholar 

  • Plaper A, Golob M, Hafner I, Oblak M, Solmajer T, Jerala R (2003) Characterization of quercetin binding site on DNA gyrase. Biochem Biophys Res Commun 306:530–536

    Article  CAS  PubMed  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MA (2007) Stress-induced morphogenic responses: growing out of trouble? Trend Plant Sci 12:98–105

    Article  CAS  Google Scholar 

  • Ramsay NA, Walker AR, Mooney M, Gray JC (2003) Two basichelix–loop–helix genes (MYC-146 and GL3) from Arabidopsis can activate anthocyanin biosynthesis in a white-flowered Matthiola incana mutant. Plant Mol Biol 52:679–688

    Article  CAS  PubMed  Google Scholar 

  • Rausher MD (2006) The evolution of flavonoids and their genes. In: Grotewold E (ed) The science of flavonoids, Springer, pp 175–211

    Google Scholar 

  • Saviranta NMM, Julkunen-Tiitto R, Oksanen E, Karjalainen RO (2010) Leaf phenolic compounds in red clover (Trifolium pratense L.) induced by exposure to moderately elevated ozone. Environ Pollut 158:440–446

    Article  CAS  PubMed  Google Scholar 

  • Sharma YK, Davis KR (1994) Ozone-induced expression of stress related genes in Arabidopsis thaliana. Plant Physiol 105:1089–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiu CT, Lee TM (2005) Ultraviolet-B-induced oxidative stress and responses of the ascorbate–glutathione cycle in a marine macroalga Ulva fasciata. J Exp Bot 56:2851–2865

    Article  CAS  PubMed  Google Scholar 

  • Shojaie B, Mostajerani A, Mustafa Ghannadian M (2016) Flavonoid dynamic responses to different drought conditions: amount, type, and localization of flavonols in roots and shoots of Arabidopsis thaliana L. Turk J Biol 40:612–622

    Article  CAS  Google Scholar 

  • Skadhauge B, Thomsen K, vonWettstein D (1997) The role of barley testa layer and its flavonoid content in resistance to Fusarium infections. Hereditas 126:147–160

    Article  CAS  Google Scholar 

  • Soitamo A, Piippo M, Allahverdiyeva Y, Battchikova N, Aro EM (2008) Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biol 8:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Tattini M, Remorini D, Pinelli P, Agati G, Saracini E, Traversi ML, Massai R (2006) Morpho-anatomical, physiological and biochemical adjustments in response to root zone salinity stress and high solar radiation in two Mediterranean evergreen shrubs, Myrtus communis and Pistacia lentiscus. New Phytol 170:779–794

    Article  CAS  PubMed  Google Scholar 

  • Vasquez-Robinet C, Mane SP, Ulanov AV, Watkinson JI, Stromberg VK, Koeyer DD, Schafleitner R, Willot DB, Bonierbale M, Bohnert HJ, Grene R (2008) Physiological and molecular adaptations to drought in Andean potato genotypes. J Exp Bot 59:2109–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wamaker SI, Mandal J, Xu J, Cui X, Close TM (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CY, Chen CT, Wang SY (2009) Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chem 117:426–431

    Article  CAS  Google Scholar 

  • Winkel-Shirley B (2001) It takes a garden. How work on diverse plant species has contributed to an understanding of flavonoid metabolism. Plant Physiol 127:1399–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki H, Sakihama Y, Ikehara N (1997) Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiol 115:1405–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yogendra NK, Kushalappa AC, Sarmiento F, Rodriguez E, Mosquera T (2015) Metabolomics deciphers quantitative resistance mechanisms in diploid potato clones against late blight. Funct Plant Biol 42:284–298

    CAS  Google Scholar 

  • Zechmann B, Stumpe M, Mauch F (2011) Immunocytochemical determination of the subcellular distribution of ascorbate in plants. Planta 233:1–12

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Quantick PC (1997) Effects of chitosan coating on enzymatic browning and decay during postharvest storage of litchi (Litchi chinensis Sonn.) fruit. Postharvest Biol Technol 12:195–202

    Article  CAS  Google Scholar 

  • Zhao J, Dixon RA (2009) The ‘ins’ and ‘outs’ of flavonoid transport. Trend Plant Sci 14:72–80

    Google Scholar 

Download references

Acknowledgements

This study was supported by a grant (Sanction No. PDF/2016/000750) from the Department of Science and Technology—Science and Engineering Research Board, Government of India. This study was also supported by Bharathiar University, UGC-SAP and DST-FIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathishkumar Ramalingam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baskar, V., Venkatesh, R., Ramalingam, S. (2018). Flavonoids (Antioxidants Systems) in Higher Plants and Their Response to Stresses. In: Gupta, D., Palma, J., Corpas, F. (eds) Antioxidants and Antioxidant Enzymes in Higher Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-75088-0_12

Download citation

Publish with us

Policies and ethics