Skip to main content

Electrothermal Cutting Process

  • Chapter
  • First Online:
Advanced Noncontact Cutting and Joining Technologies

Part of the book series: Mechanical Engineering Series ((MES))

  • 809 Accesses

Abstract

Electrothermal cutting processes employ a combination of electrical energy and heat to achieve material removal process. Many materials will burn when subjected to heat. By bringing materials into melting and vaporisation state, material cutting can be achieved. Electrothermal machining is an advanced machining process which is contact-less and hence does not require the physical contact of the tool and the workpiece making cutting forces negligible. There are different types of electrothermal machining processes such as electrical discharged machining, electron beam machining and laser beam machining, which are explained in this chapter. This advanced machining process however uses thermal energy to achieve the desired cutting process but does not create heat damage to the material when compared to the similar conventional cutting processes. The principles of operation of each of these processes are explained in this chapter with their advantages, limitations and areas of application. Some research works in this field are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Muthuramalingam, B. Mohan, A review on influence of electrical process parameters in EDM process. Arch. Civ. Mech. Eng. 15, 87–94 (2015)

    Article  Google Scholar 

  2. V. Verma, R. Sahu, Process parameter optimization of die-sinking EDM on titanium grade – V alloy (Ti6Al4V) using full factorial design approach. Mater. Today: Proc. 4, 1893–1899 (2017)

    Article  Google Scholar 

  3. S. Vinoth Kumar, M. Pradeep Kumar, Machining process parameter and surface integrity in conventional EDM and cryogenic EDM of Al–SiCp MMC. J. Manuf. Process. 20 (, 70–78 (2015)

    Article  Google Scholar 

  4. S. Tripathy, D.K. Tripathy, Surface characterization and multi-response optimization of EDM process parameters using powder mixed dielectric. Mater. Today: Proc. 4, 2058–2067 (2017)

    Article  Google Scholar 

  5. Mohammadreza Shabgard, Mirsadegh Seyedzavvar – Samad Nadimi Bavil Oliaei. Influence of input parameters on the characteristics of the EDM process. J. Mech. Eng. 57(2011)9, 689–696

    Article  Google Scholar 

  6. M.R. Mahamood, Laser Metal Deposition Process of Metals, Alloys, and Composite Materials (Springer, Cham, 2018)

    Book  Google Scholar 

  7. G. Chryssolouris, Laser Machining – Theory and Practice (Mechanical Engineering Series) (Springer – Verlag, New York, 1991)

    Google Scholar 

  8. K. Sugioka, M. Meunier, A. Pique, Laser Precision Microfabrication (Springer-Verlag, Berlin, 2010)

    Book  Google Scholar 

  9. A. Sharma, V. Yadava, Experimental analysis of Nd-YAG laser cutting of sheet materials – A review. Opt. Laser Technol. 98, 264–280 (2018)

    Article  Google Scholar 

  10. A.K. Dubey, V. Yadava, Laser beam machining—A review. Int J Mach Tool Manu 48, 609–628 (2008)

    Article  Google Scholar 

  11. E. Williams, N. Lavery, Laser processing of bulk metallic glass: A review. J. Mater. Process. Tech. 247, 73–91 (2017)

    Article  Google Scholar 

  12. F.O. Olsen, L. Alting, Pulsed laser materials processing, Nd-YAG versus CO2 lasers. Ann. CIRP 44(1), 141–145 (1995)

    Article  Google Scholar 

  13. D. Petring, Laser Cutting, LIA Handbook of Laser Materials Processing (Laser Institute of America, Orlando, 2001)

    Google Scholar 

  14. S. Nisar, M.A. Sheikh, L. Li, A.J. Pinkerton, S. Safdar, The effect of laser beam geometry on cut path deviation in diode laser chip-free cutting of glass. J. Manuf. Sci. Eng. Trans. ASME 132(011002), 1–9 (2010)

    Google Scholar 

  15. C.H. Tsai, C.J. Chen, Application of iterative path revision technique for laser cutting with controlled fracture. Opt. Lasers Eng. 41, 189–204 (2004)

    Article  Google Scholar 

  16. C.H. Tsai, H.W. Chen, Laser cutting of thick ceramic substrates by controlled fracture technique. J. Mat. Proc. Technol. 136, 166–173 (2003)

    Article  Google Scholar 

  17. A.K. Dubey, V. Yadava, Laser beam machining – A review. Int. J. Mach. Tools Manuf. 48, 609–628 (2008)

    Article  Google Scholar 

  18. S. Gbordzoe, S. Yarmolenko, S. Kanakaraj, M.R. Haase, N.T. Alvarez, R. Borgemenke, P.K. Adusei, V. Shanov, Effects of laser cutting on the structural and mechanical properties of carbon nanotube assemblages. Mater. Sci. Eng. B 223, 143–152 (2017)

    Article  Google Scholar 

  19. K. Jarosz, P. Löschner, P. Niesłony, Effect of cutting speed on surface quality and heat-affected zone in laser cutting of 316L stainless steel. Procedia Eng. 149, 155–162 (2016)

    Article  Google Scholar 

  20. O.S. Bursi, M. D'Incau, G. Zanon, S. Raso, P. Scardi, Laser and mechanical cutting effects on the cut-edge properties of steel S355N. J. Constr. Steel Res. 133, 181–191 (2017)

    Article  Google Scholar 

  21. C. Mao, X. Sun, H. Huang, C. Kang, M. Zhang, Y. Wu, Characteristics and removal mechanism in laser cutting of cBN–WC–10Co composites. J. Mater. Process. Technol. 230, 42–49 (2016)

    Article  Google Scholar 

  22. D.F. Pessoa, P. Herwig, A. Wetzig, M. Zimmermann, Influence of surface condition due to laser beam cutting on the fatigue behavior of metastable austenitic stainless steel AISI 304. Eng. Fract. Mech. 185, 227–240 (2017). https://doi.org/10.1016/j.engfracmech.2017.05.040

    Article  Google Scholar 

  23. G. Thawari, J.K. Sarin Sundar, G. Sundararajan, S.V. Joshi, Influence of process parameters during pulsed Nd-YAG laser cutting of nickel-base superalloys. J. Mat. Proc. Technol. 170, 222–239 (2005)

    Article  Google Scholar 

  24. D. Lee, J. Mazumder, Effects of momentum transfer on sizing of current collectors for lithium-ion batteries during laser cutting. Opt. Laser Technol. 99, 315–325 (2018)

    Article  Google Scholar 

  25. M.P. Sealy, Y.B. Guo, J.F. Liu, C. Li, Pulsed laser cutting of magnesium-calcium for biodegradable stents. Procedia CIRP 42, 67–72 (2016)

    Article  Google Scholar 

  26. H. Ozaki, M.Q. Le, H. Kawakami, J. Suzuki, Y. Uemura, Y. Doi, M. Mizutani, Y. Kawahito, Real-time observation of laser cutting fronts by X-ray transmission. J. Mater. Process. Technol. 237, 181–187 (2016)

    Article  Google Scholar 

  27. M. Madić, J. Antucheviciene, M. Radovanović, D. Petković, Determination of laser cutting process conditions using the preference selection index method. Opt. Laser Technol. 89, 214–220 (2017)

    Article  Google Scholar 

  28. O. Anicic, S. Jović, H. Skrijelj, B. Nedić, Prediction of laser cutting heat affected zone by extreme learning machine. Opt. Lasers Eng. 88, 1–4 (2017)

    Article  Google Scholar 

  29. A.B. Lopez, E. Assunção, L. Quintino, J. Blackburn, A. Khan, High-power fiber laser cutting parameter optimization for nuclear decommissioning. Nucl. Eng. Technol. 49(4), 865–872 (2017)

    Article  Google Scholar 

  30. J.S. Shin, S.Y. Oh, H. Park, C.-M. Chung, S. Seon, T.-S. Kim, L. Lee, J. Lee, Laser cutting of steel plates up to 100 mm in thickness with a 6-kW fiber laser for application to dismantling of nuclear facilities. Opt. Lasers Eng. 100, 98–104 (2018)

    Article  Google Scholar 

  31. A. Lopez, E. Assunção, I. Pires, L. Quintino, Secondary emissions during fiber laser cutting of nuclear material. Nucl. Eng. Des. 315, 69–76 (2017)

    Article  Google Scholar 

  32. D. Lee, J. Cho, C.H. Kim, S.H. Lee, Application of laser spot cutting on spring contact probe for semiconductor package inspection. Opt. Laser Technol. 97, 90–96 (2017)

    Article  Google Scholar 

  33. G.C. Rodrigues, C. Decroos, J.R. Duflou, Considerations on assist gas jet optimization in laser cutting with direct diode laser. Procedia Eng. 183, 37–44 (2017)

    Article  Google Scholar 

  34. M. Schleier, B. Adelmann, B. Neumeier, R. Hellmann, Burr formation detector for fiber laser cutting based on a photodiode sensor system. Opt. Laser Technol. 96, 13–17 (2017)

    Article  Google Scholar 

  35. J. Zhao, P. Cheng, A lattice Boltzmann method for simulating laser cutting of thin metal plates. Int. J. Heat Mass Transfer 110, 94–103 (2017)

    Article  Google Scholar 

  36. B.S. Yilbas, M.M. Shaukat, F. Ashraf, Laser cutting of various materials: Kerf width size analysis and life cycle assessment of cutting process. Opt. Laser Technol. 93, 67–73 (2017)

    Article  Google Scholar 

  37. A. Riveiro, F. Quintero, J. del Val, M. Boutinguiza, R. Comesaña, F. Lusquiños, J. Pou, Laser cutting using off-axial supersonic rectangular nozzles. Precis. Eng. 51, 78–87 (2018). https://doi.org/10.1016/j.precisioneng.2017.07.013

    Article  Google Scholar 

  38. K. Krot, E. Chlebus, B. Kuźnicka, Laser cutting of composite sandwich structures. Arch. Civ. Mech. Eng. 17(3), 545–554 (2017)

    Article  Google Scholar 

  39. A.J. Guerra, J. Farjas, J. Ciurana, Fibre laser cutting of polycaprolactone sheet for stents manufacturing: A feasibility study. Opt. Laser Technol. 95, 113–123 (2017)

    Article  Google Scholar 

  40. B.S. Yilbas, S.S. Akhtar, C. Karatas, Laser circular cutting of Kevlar sheets: Analysis of thermal stress filed and assessment of cutting geometry. Opt. Laser Technol. 96, 180–189 (2017)

    Article  Google Scholar 

  41. J.S. Shin, S.Y. Oh, H. Park, C.-M. Chung, S. Seon, T.-S. Kim, L. Lee, B.-S. Choi, J.-K. Moon, High-speed fiber laser cutting of thick stainless steel for dismantling tasks. Opt. Laser Technol. 94, 244–247 (2017)

    Article  Google Scholar 

  42. T.D. Yuzvinsky, A.M. Fennimore, W. Mickelson, C. Esquivias, A. Zettl View Affiliations, Precision cutting of nanotubes with a low-energy electron beam. Appl. Phys. Lett. 86, 053109 (2005). https://doi.org/10.1063/1.1857081

    Article  Google Scholar 

  43. G.A. Dearborn Mesyats, Explosive Electron Emission (URO Press, Ekaterinburg, 1998)

    Google Scholar 

  44. H. Schultz, Electron Beam Welding (Abington Publishing, Cambridge, 1994)

    Book  Google Scholar 

  45. T. Gnanavel, Z. Saghi, Y. Peng, B.J. Inkson, M.R.J. Gibbs, G. Möbus, in Nanofabrication of Ferromagnetic Nanotips and Nanobridges by 2D and 3D Electron-Beam Cutting, ed. by S. Richter, A. Schwedt. EMC 2008 14th European Microscopy Congress 1–5 September 2008, Aachen, Germany (Springer, Berlin, Heidelberg, 2008)

    Google Scholar 

  46. R.W. Schneider, Electron Beam Machining, in ASM Handbook, vol 16, Machining, (ASM International, Materials Park, 1989)

    Google Scholar 

  47. Y. Uno et al., High efficiency finishing process for metal mold by large-area electron beam irradiation. Precis. Eng. 29(4), 449–455 (2005)

    Article  MathSciNet  Google Scholar 

  48. J. Taniguchi, S.-i. Satake, T. Oosumi, A. Fukushige, Y. Kogo, Dwell time adjustment for focused ion beam machining. Nucl. Inst. Methods Phys. Res. B 307, 248–252 (2013)

    Article  Google Scholar 

  49. H.-S. Yoon, C.-S. Kim, H.-T. Lee, S.-H. Ahn, Advanced scanning paths for focused ion beam milling. Vacuum 143, 40–49 (2017)

    Article  Google Scholar 

  50. D. De Felicis, M.Z. Mughal, E. Bemporad, A method to improve the quality of 2.5 dimensional micro-and nanostructures produced by focused ion beam machining. Micron 101, 8–15 (2017)

    Article  Google Scholar 

  51. A. Sabouri, C.J. Anthony, J. Bowen, V. Vishnyakov, P.D. Prewett, The effects of dwell time on focused ion beam machining of silicon. Microelectron. Eng. 121, 24–26 (2014)

    Article  Google Scholar 

  52. D.M. Allen, P. Shore, R.W. Evans, C. Fanara, W. O’Brien, S. Marson, W. O’Neill, Ion beam, focused ion beam, and plasma discharge machining. CIRP Ann. Manuf. Technol. 58, 647–662 (2009)

    Article  Google Scholar 

  53. D.P. Adams, M.J. Vasile, T.M. Mayer, Focused ion beam sculpting curved shape cavities in crystalline and amorphous targets. J. Vac. Sci. Technol. B 24(4), 1766–1775 (2006)

    Article  Google Scholar 

  54. D.P. Adams, T.M. Mayer, M.J. Vasile, K. Archuleta, Effects of evolving surface morphology on yield during focused ion beam milling of carbon. Appl. Surf. Sci. 252, 2432–2344 (2006)

    Article  Google Scholar 

  55. P.A. Beck, B.F.P. Roos, S.O. Demokritov, B. Hillebrands, Ion beam smoothing with low-energy argon ions and reduction of néel “Orange peel” coupling in magnetic tunnel junctions. J. Magn. Magn. Mater. 290–291, 1108–1111 (2005)

    Article  Google Scholar 

  56. X. Ding et al., Machining with micro-sized single crystalline diamond tools fabricated by a focused ion beam. J. Micromech. Microeng. 19, 025005 (2009)

    Article  Google Scholar 

  57. X. Ding, G.C. Lim, C.K. Cheng, D.L. Butler, K.C. Shaw, K. Liu, W.S. Fong, Fabrication of a micro-size diamond tool using a focused ion beam. J. Micromech. Microeng. 18, 075017 (2008)

    Article  Google Scholar 

  58. K. Edinger, T. Kraus, Modeling of focused ion beam induced chemistry and comparison with experimental data. Microelectron. Eng. 57–58, 263–268 (2001)

    Article  Google Scholar 

  59. C.M. Egert, Roughness Evolution of Optical Materials Induced by Ion Beam Milling, in Proceedings of the SPIE 1752, 1992

    Google Scholar 

  60. R.W. Evans, S. Marson, D.M. Allen, A Review of Focused Ion Beam Technology for the Fabrication of Ultra Precision Diamond Cutting Tools, in Proceedings of the 6th International Conference on Materials for Microelectronics and Nanoengineering (Cranfield, UK, 2006, p. 9–12)

    Google Scholar 

  61. R.W. Evans, D.M. Allen Fabricating Diamond Microtools with Focused Ion Beam Machining, in Proceedings of the 10th Anniversary EuSPEN International Conference, vol. 2 (Zürich, Switzerland, 2008, p. 11–15)

    Google Scholar 

  62. L. Frey, C. Lehrer, H. Ryssel, Nanoscale effects in focused ion beam processing. Appl. Phys. A 76, 1017–1023 (2003)

    Article  Google Scholar 

  63. F. Frost, R. Fechner, B. Ziberi, D. Flamm, A. Schindler, Large area smoothing of optical surfaces by low-energy ion beams. Thin Solid Films 459, 100–105 (2004)

    Article  Google Scholar 

  64. S. Chamarthi, N. Sinivasa Reddy, M.K. Elipey, D.V. Ramana Reddy, Investigation analysis of plasma arc cutting parameters on the unevenness surface of Hardox-400 material. Procedia Eng. 64, 854–861 (2013)

    Article  Google Scholar 

  65. K. Salonitis, S. Vatousianos, Experimental investigation of the plasma arc cutting process. Procedia CIRP 3, 287–292 (2012)

    Article  Google Scholar 

  66. F. Rotundo, C. Martini, C. Chiavari, L. Ceschini, A. Concetti, E. Ghedini, V. Colombo, S. Dallavalle, Plasma arc cutting: Microstructural modifications of hafnium cathodes during first cycles. Mater. Chem. Phys. 134(2–3), 858–866 (2012)

    Article  Google Scholar 

  67. S. Liu, S. Chen, Q. Wang, Y. Li, H. Zhang, H. Ding, Analysis of plasma characteristics and conductive mechanism of laser assisted pulsed arc welding. Opt. Lasers Eng. 92, 39–47 (2017)

    Article  Google Scholar 

  68. E. Gariboldi, B. Previtali, High tolerance plasma arc cutting of commercially pure titanium. J. Mater. Process. Technol. 160(1), 77–89 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Johannesburg research council (URC) and University of Ilorin.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahamood, R.M., Akinlabi, E.T. (2018). Electrothermal Cutting Process. In: Advanced Noncontact Cutting and Joining Technologies. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-75118-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75118-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75117-7

  • Online ISBN: 978-3-319-75118-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics