Skip to main content

Non-contact Welding Technologies: Solid-State Welding

  • Chapter
  • First Online:
Advanced Noncontact Cutting and Joining Technologies

Part of the book series: Mechanical Engineering Series ((MES))

  • 888 Accesses

Abstract

Solid-state non-contact joining technology is an advanced joining method that does not involve melting of the workpiece and there is no direct contact between the tool and the workpiece. Ultrasonic welding, friction welding, explosive welding and resistance welding are the four non-contact solid-state welding techniques that are discussed in this chapter. The principle of operations, advantages, disadvantages and areas of applications of each of these advanced welding techniques are explained. Some of the research works in this area are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z.L. Ni, F.X. Ye, Weldability and mechanical properties of ultrasonic welded aluminum to nickel joints. Mater. Lett. 185, 204–207 (2016)

    Article  Google Scholar 

  2. Z.L. Ni, F.X. Ye, Ultrasonic spot welding of Al sheets by enhancing the temperature of weld interface. Mater. Lett. 208, 69–72 (2017)

    Article  Google Scholar 

  3. T.J. Rinker, J. Pan, M. Santella, T.-Y. Pan, Fatigue behavior of dissimilar ultrasonic welds in lap-shear specimens of AZ31 and steel sheets. Eng. Fract. Mech. (2017). https://doi.org/10.1016/j.engfracmech.2017.11.018

  4. M. de Leon, H.-S. Shin, Weldability assessment of Mg alloy (AZ31B) sheets by an ultrasonicspot welding method. J. Mater. Process. Technol. 243, 1–8 (2017)

    Article  Google Scholar 

  5. K. Wang, L. Yang, M. Banu, J. Li, W. Guo, H. Khan, Effect of interfacial preheating on welded joints during ultrasonic composite welding. J. Mater. Process. Technol. 246, 116–122 (2017)

    Article  Google Scholar 

  6. Austin A. Ward, Matthew R. French, Donovan N. Leonard, Zachary C. Cordero, Grain growth during ultrasonic welding of nanocrystalline alloys. J. Mater. Process. Technol. (2017) https://doi.org/10.1016/j.jmatprotec.2017.11.049

  7. D. Ren, K. Zhao, M. Pan, Y. Chang, S. Gang, D. Zhao, Ultrasonic spot welding of magnesium alloy to titanium alloy. Scr. Mater. 126, 58–62 (2017)

    Article  Google Scholar 

  8. D. Zhao, D. Ren, K. Zhao, S. Pan, X. Guo, Effect of welding parameters on tensile strength of ultrasonic spot welded joints of aluminum to steel—By experimentation and artificial neural network. J. Manuf. Process. 30, 63–74 (2017.) ISSN 1526-6125, https://doi.org/10.1016/j.jmapro.2017.08.009

    Article  Google Scholar 

  9. U. Parmar, D.H. Pandya, Experimental investigation of ultrasonic welding on non-metallic material. Procedia Technol. 23, 551–557 (2016)

    Article  Google Scholar 

  10. S.I. Minin, Technology of thermal welding with ultrasonic weld joint treatment as applied to NPP formworks. Nucl. Energ. Technol. 3(3), 216–219 (2017.) ISSN 2452-3038

    Article  MathSciNet  Google Scholar 

  11. K. Wang, D. Shriver, Y. Li, M. Banu, S. Jack Hu, G. Xiao, J. Arinez, H.-T. Fan, Characterization of weld attributes in ultrasonic welding of short carbon fiber reinforced thermoplastic composites. J. Manuf. Process. 29, 124–132 (2017)

    Article  Google Scholar 

  12. W.X. Chan, S.H. Ng, K.H.H. Li, W.-T. Park, Y.-J. Yoon, Micro-ultrasonic welding using thermoplastic-elastomeric composite film. J. Mater. Process. Technol. 236, 183–188 (2016)

    Article  Google Scholar 

  13. N. Shen, A. Samanta, H. Ding, W.W. Cai, Simulating microstructure evolution of ultrasonic welding of battery tabs. Procedia Manuf. 5, 399–416 (2016)

    Article  Google Scholar 

  14. R. Palanivel, I. Dinaharan, R.F. Laubscher, Assessment of microstructure and tensile behavior of continuous drive friction welded titanium tubes. Mater. Sci. Eng. A 687, 249–258 (2017)

    Article  Google Scholar 

  15. X.Y. Wang, W.Y. Li, T.J. Ma, A. Vairis, Characterisation studies of linear friction welded titanium joints. Mater. Design 116, 115–126 (2017)

    Article  Google Scholar 

  16. M. Kimura, K. Suzuki, M. Kusaka, K. Kaizu, Effect of friction welding condition on joining phenomena, tensile strength, and bend ductility of friction welded joint between pure aluminium and AISI 304 stainless steel. J. Manuf. Process. 25, 116–125 (2017)

    Article  Google Scholar 

  17. O.N. Senkov, D.W. Mahaffey, S.L. Semiatin, Effect of process parameters on process efficiency and inertia friction welding behavior of the superalloys LSHR and Mar-M247. J Mater. Process. Technol. 250, 156–168 (2017)

    Article  Google Scholar 

  18. H. Mogami, T. Matsuda, T. Sano, R. Yoshida, H. Hori, A. Hirose, High-frequency linear friction welding of aluminum alloys. Mater. Design 139, 457–466 (2018)

    Article  Google Scholar 

  19. M. Meisnar, S. Baker, J.M. Bennett, A. Bernad, A. Mostafa, S. Resch, N. Fernandes, A. Norman, Microstructural characterisation of rotary friction welded AA6082 and Ti-6Al-4V dissimilar joints. Mater. Design 132, 188–197 (2017)

    Article  Google Scholar 

  20. F. Sarsilmaz, I. Kirik, S. Batı, Microstructure and mechanical properties of armor 500/AISI2205 steel joint by friction welding. J. Manuf. Process. 28(Part 1), 131–136 (2017)

    Article  Google Scholar 

  21. E.-o. Bouarroudj, S. Chikh, S. Abdi, D. Miroud, Thermal analysis during a rotational friction welding. Appl. Therm. Eng. 110, 1543–1553 (2017)

    Article  Google Scholar 

  22. R. Paventhan, P.R. Lakshminarayanan, V. Balasubramanian, Optimization of friction welding process parameters for joining carbon steel and stainless steel. J. Iron Steel Res. Int. 19(1), 66–71 (2012)

    Article  Google Scholar 

  23. M. Kimura, K. Suzuki, M. Kusaka, K. Kaizu, Effect of friction welding condition on joining phenomena and mechanical properties of friction welded joint between 6063 aluminium alloy and AISI 304 stainless steel. J. Manuf. Process. 26, 178–187 (2017)

    Article  Google Scholar 

  24. R. Winiczenko, O. Goroch, A. Krzyńska, M. Kaczorowski, Friction welding of tungsten heavy alloy with aluminium alloy. J. Mater. Process. Technol. 246, 42–55 (2017)

    Article  Google Scholar 

  25. F.C. Liu, T.W. Nelson, Grain structure evolution, grain boundary sliding and material flow resistance in friction welding of Alloy 718. Mater. Sci. Eng. A. 710, 280–288 (2018)

    Article  Google Scholar 

  26. A.R. McAndrew, P.A. Colegrove, C. Bühr, B.C.D. Flipo, A. Vairis, A literature review of Ti-6Al-4V linear friction welding. Prog. Mater. Sci. 92, 225–257 (2018)

    Article  Google Scholar 

  27. J. Teng, D. Wang, Z. Wang, X. Zhang, Y. Li, J. Cao, X. Wei, F. Yang, Repair of arc welded DH36 joint by underwater friction stitch welding. Mater. Design 118, 266–278 (2017)

    Article  Google Scholar 

  28. R. Kumar, R. Singh, I.P.S. Ahuja, A. Amendola, R. Penna, Friction welding for the manufacturing of PA6 and ABS structures reinforced with Fe particles. Compos. B Eng. 132, 244–257 (2018)

    Article  Google Scholar 

  29. F. Masoumi, L. Thébaud, D. Shahriari, M. Jahazi, J. Cormier, A. Devaux, B.C.D. Flipo, High temperature creep properties of a linear friction welded newly developed wrought Ni-based superalloy. Mater. Sci. Eng. A 710, 214–226 (2018)

    Article  Google Scholar 

  30. C. Meengam, S. Chainarong, P. Muangjunburee, Friction welding of semi-solid metal 7075 aluminum alloy. Mater. Today Proceed. 4(2 Part A), 1303–1311 (2017)

    Article  Google Scholar 

  31. F.F. Wang, W.Y. Li, J. Shen, Q. Wen, J.F. dos Santos, Improving weld formability by a novel dual-rotation bobbin tool friction stir welding. J. Mater. Sci. Technol. (2017). https://doi.org/10.1016/j.jmst.2017.11.001

  32. V. Shokri, A. Sadeghi, M.H. Sadeghi, Thermomechanical modeling of friction stir welding in a Cu-DSS dissimilar joint. J. Manuf. Process. 31, 46–55 (2018)

    Article  Google Scholar 

  33. B. Gülenç, Y. Kaya, A. Durgutlu, İ.T. Gülenç, M.S. Yıldırım, N. Kahraman, Production of wire reinforced composite materials through explosive welding. Arch. Civil Mech. Eng. 16(1), 1–8 (2016)

    Article  Google Scholar 

  34. D.M. Fronczek, J. Wojewoda-Budka, R. Chulist, A. Sypien, A. Korneva, Z. Szulc, N. Schell, P. Zieba, Structural properties of Ti/Al clads manufactured by explosive welding and annealing. Mater. Design 91, 80–89 (2016)

    Article  Google Scholar 

  35. A. Loureiro, R. Mendes, J.B. Ribeiro, R.M. Leal, I. Galvão, Effect of explosive mixture on quality of explosive welds of copper to aluminium. Mater. Design 95, 256–267 (2016)

    Article  Google Scholar 

  36. D. Boroński, M. Kotyk, P. Maćkowiak, L. Śnieżek, Mechanical properties of explosively welded AA2519-AA1050-Ti6Al4V layered material at ambient and cryogenic conditions. Mater. Design 133, 390–403 (2017)

    Article  Google Scholar 

  37. D.V. Lazurenko, I.A. Bataev, V.I. Mali, A.A. Bataev, I.N. Maliutina, V.S. Lozhkin, M.A. Esikov, A.M.J. Jorge, Explosively welded multilayer Ti-Al composites: Structure and transformation during heat treatment. Mater. Design 102, 122–130 (2016)

    Article  Google Scholar 

  38. I.A. Bataev, T.S. Ogneva, A.A. Bataev, V.I. Mali, M.A. Esikov, D.V. Lazurenko, Y. Guo, A.M. Jorge Junior, Explosively welded multilayer Ni–Al composites. Mater. Design 88, 1082–1087 (2015)

    Article  Google Scholar 

  39. M. Prażmowski, D. Rozumek, H. Paul, Static and fatigue tests of bimetal Zr-steel made by explosive welding. Eng. Failure Anal. 75, 71–81 (2017)

    Article  Google Scholar 

  40. T. Zhang, W. Wang, W. Zhang, Y. Wei, X. Cao, Z. Yan, J. Zhou, Microstructure evolution and mechanical properties of an AA6061/AZ31B alloy plate fabricated by explosive welding. J. Alloy. Compounds (2017). https://doi.org/10.1016/j.jallcom.2017.11.285, ISSN 0925-8388

  41. Q. Chu, M. Zhang, J. Li, Y. Cheng, Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding. Mater. Sci. Eng. A 689, 323–331 (2017)

    Article  Google Scholar 

  42. G.H.S.F.L. Carvalho, R. Mendes, R.M. Leal, I. Galvão, A. Loureiro, Effect of the flyer material on the interface phenomena in aluminium and copper explosive welds. Mater. Design 122, 172–183 (2017)

    Article  Google Scholar 

  43. D.M. Fronczek, R. Chulist, Z. Szulc, J. Wojewoda-Budka, Growth kinetics of TiAl3 phase in annealed Al/Ti/Al explosively welded clads. Mater. Lett. 198, 160–163 (2017)

    Article  Google Scholar 

  44. V.I. Lysak, S.V. Kuzmin, Energy balance during explosive welding. J. Mater. Process. Technol. 222, 356–364 (2015)

    Article  Google Scholar 

  45. S. Mróz, A. Gontarz, K. Drozdowski, H. Bala, P. Szota. Forging of Mg/Al bimetallic handle using explosive welded feedstock. Archives of Civil and Mechanical Engineering, 18(2), 401–412 (2018)

    Article  Google Scholar 

  46. S. Mróz, A. Gontarz, K. Drozdowski, H. Bala, P. Szota, Forging of Mg/Al bimetallic handle using explosive welded feedstock. Arch. Civil Mech. Eng. 18(2), 401–412 (2018)

    Article  Google Scholar 

  47. C. Choi, P. Tan, D. Ruan, B. Dixon, A new concept of universal substitutive explosive welding. Mater. Design 115, 393–403 (2017)

    Article  Google Scholar 

  48. C.-g. Shi, X. Yang, Y.-h. Ge, J. You, H.-b. Hou, Lower limit law of welding windows for explosive welding of dissimilar metals. J. Iron Steel Res. Int. 24(8), 852–857 (2017)

    Article  Google Scholar 

  49. P. Corigliano, V. Crupi, E. Guglielmino, A.M. Sili, Full-field analysis of AL/FE explosive welded joints for shipbuilding applications. Marine Struct. 57, 207–218 (2018)

    Article  Google Scholar 

  50. I.A. Bataev, D.V. Lazurenko, S. Tanaka, K. Hokamoto, A.A. Bataev, Y. Guo, A.M. Jorge, High cooling rates and metastable phases at the interfaces of explosively welded materials. Acta Materialia 135, 277–289 (2017)

    Article  Google Scholar 

  51. A. Loureiro, R. Mendes, J.B. Ribeiro, R.M. Leal, Effect of explosive ratio on explosive welding quality of copper to aluminium. Ciência Tecnologia dos Materiais 29(1), e46–e50 (2017)

    Article  Google Scholar 

  52. Z. Guoyin, S. Xi, Z. Jinghua, Interfacial bonding mechanism and mechanical performance of Ti/steel bimetallic clad sheet produced by explosive welding and annealing. Rare Metal Mater. Eng. 46(4), 906–911 (2017)

    Article  Google Scholar 

  53. X. Li, H. Ma, Z. Shen, Research on explosive welding of aluminum alloy to steel with dovetail grooves. Mater. Design 87, 815–824 (2015)

    Article  Google Scholar 

  54. S.H.I. Chang-gen, W.A.N.G. Yu, Z.H.A.O. Lin-sheng, H.O.U. Hong-bao, G.E. Yu-heng, Detonation mechanism in double vertical explosive welding of stainless steel/steel. J. Iron Steel Res. Int. 22(10), 949–953 (2015)

    Article  Google Scholar 

  55. D.M. Fronczek, R. Chulist, L. Litynska-Dobrzynska, S. Kac, N. Schell, Z. Kania, Z. Szulc, J. Wojewoda-Budka, Microstructure and kinetics of intermetallic phase growth of three-layered A1050/AZ31/A1050 clads prepared by explosive welding combined with subsequent annealing. Mater. Design 130, 120–130 (2017)

    Article  Google Scholar 

  56. M.M. Hoseini Athar, B. Tolaminejad, Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding. Mater. Design 86, 516–525 (2015)

    Article  Google Scholar 

  57. L. Liu, Y.-F. Jia, F.-Z. Xuan, Gradient effect in the waved interfacial layer of 304L/533B bimetallic plates induced by explosive welding. In Materials Science and Engineering: A, Volume 704, 493–502 (2017)

    Article  Google Scholar 

  58. S.M. Manladan, F. Yusof, S. Ramesh, Y. Zhang, Z. Luo, Z. Ling, Microstructure and mechanical properties of resistance spot welded in welding-brazing mode and resistance element welded magnesium alloy/austenitic stainless steel joints. J. Mater. Process. Technol. 250, 45–54 (2017)

    Article  Google Scholar 

  59. Z. Mikno, A. Pilarczyk, M. Korzeniowski, P. Kustroń, A. Ambroziak, Analysis of resistance welding processes and expulsion of liquid metal from the weld nugget. Arch. Civil Mech. Eng. 18(2), 522–531 (2018)

    Article  Google Scholar 

  60. Q. Li, Y. Zhu, J. Guo, Microstructure and mechanical properties of resistance-welded NiTi/stainless steel joints. J. Mater. Process. Technol. 249, 538–548 (2017)

    Article  Google Scholar 

  61. H.C. Lin, C.A. Hsu, C.S. Lee, T.Y. Kuo, S.L. Jeng, Effects of zinc layer thickness on resistance spot welding of galvanized mild steel. J. Mater. Process. Technol. 251, 205–213 (2018)

    Article  Google Scholar 

  62. E. Geslain, P. Rogeon, T. Pierre, C. Pouvreau, L. Cretteur, Coating effects on contact conditions in resistance spot weldability. J. Mater. Process. Technol. 253, 160–167 (2018)

    Article  Google Scholar 

  63. X. Wan, Y. Wang, D. Zhao, Y.A. Huang, A comparison of two types of neural network for weld quality prediction in small scale resistance spot welding. Mech. Syst. Signal Process. 93, 634–644 (2017)

    Article  Google Scholar 

  64. B. Xing, Y. Xiao, Q.H. Qin, Characteristics of shunting effect in resistance spot welding in mild steel based on electrode displacement. Measurement 115, 233–242 (2018)

    Article  Google Scholar 

  65. X. Wan, Y. Wang, D. Zhao, Y.A. Huang, Z. Yin, Weld quality monitoring research in small scale resistance spot welding by dynamic resistance and neural network. Measurement 99, 120–127 (2017)

    Article  Google Scholar 

  66. N. Koutras, I. Fernandez Villegas, R. Benedictus, Influence of temperature on the strength of resistance welded glass fibre reinforced PPS joints. Compos. A Appl. Sci. Manuf. 105, 57–67 (2018)

    Article  Google Scholar 

  67. S. Wu, B. Ghaffari, E. Hetrick, M. Li, Q. Liu, Z. Jia, Thermo-mechanically affected zone in AA6111 resistance spot welds. J. Mater. Process. Technol. 249, 463–470 (2017)

    Article  Google Scholar 

  68. S.S. Rao, R. Chhibber, K.S. Arora, M. Shome, Resistance spot welding of galvannealed high strength interstitial free steel. J. Mater. Process. Technol. 246, 252–261 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the University of Johannesburg research council (URC) fund and University of Ilorin.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahamood, R.M., Akinlabi, E.T. (2018). Non-contact Welding Technologies: Solid-State Welding. In: Advanced Noncontact Cutting and Joining Technologies. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-75118-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75118-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75117-7

  • Online ISBN: 978-3-319-75118-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics