Skip to main content

Excluding Ionospherically Unsafe Satellite Geometries in GBAS CAT-I

  • Conference paper
  • First Online:
Computer Science – CACIC 2017 (CACIC 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 790))

Included in the following conference series:

  • 518 Accesses

Abstract

We show the results of the implementation of a preliminary algorithm for excluding ionospherically unsafe satellite geometries in Ground-Based Augmentation Systems Category I. Minimum knowledge of the ionospheric threat model is assumed and the assistance of the code-carrier divergence monitor is not considered. All the satellites in view above \(5^{\circ }\) in elevation are included in the computations. The inflation of the standard deviation of the vertical ionospheric gradient implements the exclusion. Full availability remains for a typical day in the site of La Plata Airport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The four paramenters are: spatial gradient, front moving speed, width and maximum delay [11].

  2. 2.

    The minimum number of satellites to be used by the airborne is four.

  3. 3.

    A less constrained expression for IEV is presented in [22].

  4. 4.

    A contant velocity of 0.07 km/s is assumed during the approach. The time constant of the carrier-smothing filter is \(\tau \) = 100 s.

References

  1. International Civil Aviation Organization (ICAO): International Standards, Recommended Practices and Procedures for Air Navigation Services Annex 10 (1985)

    Google Scholar 

  2. U S Federal Aviation Administration (FAA): Specificaction Performance Type One Local Area Augmentation System Ground Facility. FAA-E-2937A (2002)

    Google Scholar 

  3. Rinnan, A., Gundersen, N., Sigmond, M., Nilsen, J.: Operational GNSS Integrity. In: Dynamic Positioning Conference (2011)

    Google Scholar 

  4. Dautermann, T., Sgammini, M., Pullen, S.: GBAS ionospheric threat analysis using DLRs hardware signal simulator. In: 2010 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), pp. 1–7. IEEE (2010)

    Google Scholar 

  5. Gunawardena, S., Zhu, Z., De Haag, M., Graas, F.: Remote-controlled, continuously operating GPS anomalous event monitor. J. Inst. Navig. 56, 97–113 (2009)

    Article  Google Scholar 

  6. Park, Y., Pullen, S., Enge P.: Enabling LAAS airport surface movement: mitigating the anomalous ionospheric threat. In: IEEE/ION, Position, Location, and Navigation Symposium (2010)

    Google Scholar 

  7. Suzuki, S., Nozaki, Y., Ono, T., Yosihara, T., Saitoh, S., Fukushima, S.: CAT-I GBAS availability improvement through ionosphere field monitor (IFM). In: Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation (2011)

    Google Scholar 

  8. Radio Technical Commission for Aeronautics (RTCA): Minimum Operational Performance Standards for GPS Local Area Augmentation Systm Airborne Equipment. Tecnical report DO253C (2008)

    Google Scholar 

  9. Radio Technical Commission for Aeronautics (RTCA): Minimum Aviation System Performance for the Local Area Augmentation System. Technical report DO245A (2004)

    Google Scholar 

  10. Elias, P., Saotome, O.: System architecture-based design methodology for monitoring the ground-based augmentatiom system, category I - integrity risk. J. Aerosp. Technol. Manag. 4, 205–218 (2012). São José dos Campos

    Article  Google Scholar 

  11. Lee, J., Pullen, S., Park, Y., Enge P., Brenner, M.: Position-domain geometry screening to maximize LAAS availability in the presence of ionosphere anomalies. In: Proceedings of the 19th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GNSS (2006)

    Google Scholar 

  12. Luo, M., Pullen, S., Akos, D., Xie, G., Datta-Barua, S., Walter, T., Enge P.: Assessment of ionospheric impact on LAAS using WAAS supertruth data. In: Proceedings of the ION 58th Annual Meeting (2002)

    Google Scholar 

  13. International Civil Aviation Orgaanization South American Office (ICAO-SAM): Guide for Ground Based Augmentation System Implementation (2013)

    Google Scholar 

  14. Pullen, S. Park Y., Enge, P.: The IMpact and Mitigation of ionspheric anomalies on ground-based augmentation of GNSS. Radio Sci. 44 (2009)

    Google Scholar 

  15. Pullen, S., Enge, P.: An overview of GBAS integrity monitoring with a focus on ionspheric spatial anomalies. Indian J. Radio Space Phys. (2007)

    Google Scholar 

  16. Lee, J., Yoon, M., Pullen, S., Gillespie, J., Mather, N., Cole, R., Rodrigues de Souza, J., Doherty, P., Pradipta, R.: Preliminary results from ionospheric threat model development to support GBAS operations in the Brazilian region. In: Proceedings of the 28th International Technical Meeting of the Satellite Division of the Institute of Navigation (2015)

    Google Scholar 

  17. International Civil Aviation Orgaanization Asia and Pacific Office (ICAO-APAC): GBAS Safety Assesment Guidance Related to Anomalous Ionospheric Conditions (2016)

    Google Scholar 

  18. Kim, M., Lee, J., Pullen, S., Gillespie, J.: Data quality improvement and applications of long-term monitoring of ionospheric anomalies for GBAS. In: Proceedings of ION GNSS (2012)

    Google Scholar 

  19. U.S. Federal Aviation Administration (FAA): Ground Based Augmentation System Performance Analysis and Activities Report. First Quarter Report (2017)

    Google Scholar 

  20. Murphy, T., Harris, M., Park, Y., Pullen, S.: GBAS differentially corrected positioning service ionospheric anomaly errors evaluated in an operational context. In: Proceedings of the 2010 International Technical Meeting of the Institute of Navigation (2010)

    Google Scholar 

  21. Shively, C., Niles, R.: Safety concepts for mitigation of ionospheric anomaly errors in GBAS. In: Proceedings of the 2008 International Technical Meeting of the Institute of Navigation (2008)

    Google Scholar 

  22. Lee, J., Seo, J., Park, Y., Pullen, S., Enge, P.: Ionospheric threat mitigation by geometry screening in ground-based augmentation systems. J. Aircr. 48, 1422–1433 (2011)

    Article  Google Scholar 

  23. Vemuri, S., Sarma, A., Redd, A., Reddy, D.: Investigation of the effect of ionospheric gradient on GPS signals in the context of LAAS. Prog. Electromagn. Res. B 57, 191–205 (2014)

    Article  Google Scholar 

  24. Seo, J., Lee, J., Pullen, S., Enge, P., Close, S.: Trageted parameter inflation within ground-based augmentation systems to minimizw anomalous ionospheric impact. J. Aircr. 49, 587–599 (2012)

    Article  Google Scholar 

  25. Simili, D., Pervan, B.: Code-carrier divergence monitor for the GPS local area augmentation system. In: IEEE/ION, Position, Location, and Navigation Symposium (2006)

    Google Scholar 

  26. Radio Technical Commission for Aeronautics (RTCA): Minimum Operational Performance Standards for GPS Local Area Augmentation Systm Airborne Equipment. Tecnical report DO246D (2008)

    Google Scholar 

  27. Pullen, S.: Lessons learned from the development of GNSS integrity augmentations. In: Coordinates (2016). http://mycoordinates.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Bria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bria, O., Giacomantone, J., Lorenti, L. (2018). Excluding Ionospherically Unsafe Satellite Geometries in GBAS CAT-I. In: De Giusti, A. (eds) Computer Science – CACIC 2017. CACIC 2017. Communications in Computer and Information Science, vol 790. Springer, Cham. https://doi.org/10.1007/978-3-319-75214-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75214-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75213-6

  • Online ISBN: 978-3-319-75214-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics