Skip to main content

Biological Diversity and Evolution of Type IV Secretion Systems

  • Chapter
  • First Online:
Type IV Secretion in Gram-Negative and Gram-Positive Bacteria

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 413))

Abstract

The bacterial type IV secretion systems (T4SSs) are a highly functionally and structurally diverse superfamily of secretion systems found in many species of Gram-negative and -positive bacteria. Collectively, the T4SSs can translocate DNA and monomeric and multimeric protein substrates to a variety of bacterial and eukaryotic cell types. Detailed phylogenomics analyses have established that the T4SSs evolved from ancient conjugation machines whose original functions were to disseminate mobile DNA elements within and between bacterial species. How members of the T4SS superfamily evolved to recognize and translocate specific substrate repertoires to prokaryotic or eukaryotic target cells is a fascinating question from evolutionary, biological, and structural perspectives. In this chapter, we will summarize recent findings that have shaped our current view of the biological diversity of the T4SSs. We focus mainly on two subtypes, designated as the types IVA (T4ASS) and IVB (T4BSS) systems that respectively are represented by the paradigmatic Agrobacterium tumefaciens VirB/VirD4 and Legionella pneumophila Dot/Icm T4SSs. We present current information about the composition and architectures of these representative systems. We also describe how these and a few related T4ASS and T4BSS members evolved as specialized nanomachines through acquisition of novel domains or subunits, a process that ultimately generated extensive genetic and structural mosaicism among this secretion superfamily. Finally, we present new phylogenomics information establishing that the T4BSSs are much more broadly distributed than initially envisioned.

The original version of this chapter was revised: Author name has been corrected. The erratum to this chapter is available at https://doi.org/10.1007/978-3-319-75241-9_14

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgements

Work in the Christie laboratory was supported by NIH grants R01GM48476 and R21AI105454. Work in the CB laboratory is financed by the Institut Pasteur, the grants N°ANR-10-LABX-62-IBEID, the Fondation pour la Recherche Médicale (FRM) grant N° DEQ 20120323697, and the Infect-ERA project EUGENPATH (ANR-13-IFEC-0003-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Christie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Christie, P.J., Gomez Valero, L., Buchrieser, C. (2017). Biological Diversity and Evolution of Type IV Secretion Systems. In: Backert, S., Grohmann, E. (eds) Type IV Secretion in Gram-Negative and Gram-Positive Bacteria. Current Topics in Microbiology and Immunology, vol 413. Springer, Cham. https://doi.org/10.1007/978-3-319-75241-9_1

Download citation

Publish with us

Policies and ethics