Skip to main content

Insular Pharmacology

  • Chapter
  • First Online:
Island of Reil (Insula) in the Human Brain

Abstract

The insula is an area which is located deep to the sylvian fissure. It is a part of the cortex which receives sensory stimuli from the thalamus, amygdala, and limbic system; and transmits the received input to the premotor cortex and ventral striatum with the several receptors and signaling mechanisms. The receptors which are NMDA, GABA, dopamine, opioid muscarinic and glutamate, are located in different parts of the insula. Intercellular transmission in the cortex is mediated by action potential. When the anterior insula is considered as a whole, it plays a role in the organization of many activities such as attention, vocalization and music, cognitive control, perceptual decision-making, self-recognition, time perception and emotional awareness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nieuwenhuys R. The insular cortex: a review. Prog Brain Res. 2012;195:123–63. https://doi.org/10.1016/B978-0-444-53860-4.00007-6.

    Article  PubMed  Google Scholar 

  2. Tramo MJ, Loftus WC, Thomas CE, Green RL, Mott LA, Gazzaniga MS. Surface area of human cerebral cortex and its gross morphological subdivisions: in vivo measurements in monozygotic twins suggest differential hemisphere effects of genetic factors. J Cogn Neurosci. 1995;7(2):292–302. https://doi.org/10.1162/jocn.1995.7.2.292.

    Article  PubMed  CAS  Google Scholar 

  3. Yoshimuraa H, Kato N, Honjo M, Sugai T, Segami N, Onoda N. Age-dependent emergence of a parieto-insular corticocortical signal flow in developing rats. Brain Res Dev Brain Res. 2004;149(1):45–51.

    Article  CAS  Google Scholar 

  4. Parkes SL, De la Cruz V, Bermúdez-Rattoni F, Coutureau E, Ferreira G. Differential role of insular cortex muscarinic and NMDA receptors in one-trial appetitive taste learning. Neurobiol Learn Mem. 2014;116:112–6. https://doi.org/10.1016/j.nlm.2014.09.008.

    Article  PubMed  CAS  Google Scholar 

  5. Ferrier J, Bayet-Robert M, Dalmann R, El Guerrab A, Aissouni Y, Graveron-Demilly D, et al. Cholinergic neurotransmission in the posterior insular cortex is altered in preclinical models of neuropathic pain: key role of muscarinic M2 receptors in donepezil-induced antinociception. J Neurosci. 2015;35(50):16438–0.

    Article  CAS  Google Scholar 

  6. Gu X, Gao Z, Wang X, Liu X, Knight RT, Hof PR, et al. Anterior insular cortex is necessary for empathetic pain perception. Brain. 2012;135:2726–35. https://doi.org/10.1093/brain/aws199.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Inaba Y, de Guzman P, Avoli M. NMDA receptor-mediated transmission contributes to network ‘hyperexcitability’ in the rat insular cortex. Eur J Neurosci. 2006;23(4):1071–6.

    Article  PubMed  Google Scholar 

  8. Rodríguez-Durán LF, Martínez-Moreno A, Escobar ML. Bidirectional modulation of taste aversion extinction by insular cortex LTP and LTD. Neurobiol Learn Mem. 2017;142:85–90. https://doi.org/10.1016/j.nlm.2016.12.014.

    Article  PubMed  Google Scholar 

  9. Escobar ML, Alcocer I, Chao V. The NMDA receptor antagonist CPP impairs conditioned taste aversion and insular cortex long-term potentiation in vivo. Brain Res. 1998;812(1–2):246–51.

    Article  CAS  PubMed  Google Scholar 

  10. Rosenblum K, Berman DE, Hazvi S, Lamprecht R, Dudai Y. NMDA receptor and the tyrosine phosphorylation of its 2B subunit in taste learning in the rat insular cortex. J Neurosci. 1997;17(13):5129–35.

    Article  CAS  PubMed  Google Scholar 

  11. Alves FH, Crestani CC, Resstel LB, Correa FM. N-methyl-d-aspartate receptors in the insular cortex modulate baroreflex in unanesthetized rats. Auton Neurosci. 2009;147(1–2):56–63. https://doi.org/10.1016/j.autneu.2008.12.015.

    Article  PubMed  CAS  Google Scholar 

  12. Cocker PJ, Lin MY, Barrus MM, Le Foll B, Winstanley CA. The agranular and granular insula differentially contribute to gambling-like behavior on a rat slot machine task: effects of inactivation and local infusion of a dopamine D4 agonist on reward expectancy. Psychopharmacology (Berl). 2016;233(17):3135–47. https://doi.org/10.1007/s00213-016-4355-1.

    Article  CAS  Google Scholar 

  13. Suhara T, Yasuno F, Sudo Y, Yamamoto M, Inoue M, Okubo Y, et al. Dopamine D2 receptors in the insular cortex and the personality trait of novelty seeking. Neuroimage. 2001;13(5):891–5.

    Article  CAS  PubMed  Google Scholar 

  14. Chou TS, Bucci LD, Krichmar JL. Learning touch preferences with a tactile robot using dopamine modulated STDP in a model of insular cortex. Front Neurorobot. 2015;9:6. https://doi.org/10.3389/fnbot.2015.00006.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kutlu MG, Burke D, Slade S, Hall BJ, Rose JE, Levin ED. Role of insular cortex D1 and D2 dopamine receptors in nicotine self-administration in rats. Behav Brain Res. 2013;256:273–8. https://doi.org/10.1016/j.bbr.2013.08.005.

    Article  PubMed  CAS  Google Scholar 

  16. Di Pietro NC, Mashhoon Y, Heaney C, Yager LM, Kantak KM. Role of dopamine D1 receptors in the prefrontal dorsal agranular insular cortex in mediating cocaine self-administration in rats. Psychopharmacology (Berl). 2008;200(1):81–91. https://doi.org/10.1007/s00213-008-1149-0.

    Article  CAS  Google Scholar 

  17. Pattij T, Schetters D, Schoffelmeer AN. Dopaminergic modulation of impulsive decision making in the rat insular cortex. Behav Brain Res. 2014;270:118–24. https://doi.org/10.1016/j.bbr.2014.05.010.

    Article  PubMed  CAS  Google Scholar 

  18. Christopher L, Marras C, Duff-Canning S, Koshimori Y, Chen R, Boileau I, et al. Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson’s disease with mild cognitive impairment. Brain. 2014;137(Pt 2):565–75. https://doi.org/10.1093/brain/awt337.

    Article  PubMed  Google Scholar 

  19. Yokota E, Koyanagi Y, Yamamoto K, Oi Y, Koshikawa N, Kobayashi M. Opioid subtype- and cell-type-dependent regulation of inhıbitory synaptc transmission in the rat insular cortex. Neuroscience. 2016;339:478–90. https://doi.org/10.1016/j.neuroscience.2016.10.004.

    Article  PubMed  CAS  Google Scholar 

  20. Yokota E, Koyanagi Y, Nakamura H, Horİnuki E, Oi Y, Kobayashi M. Opposite effects of mu and delta opioid receptor agonists on excitatory propagation induced in rat somatosensory and insular cortices by dental pulp stimulation. Neurosci Lett. 2016;628:52–8. https://doi.org/10.1016/j.neulet.2016.05.065.

    Article  PubMed  CAS  Google Scholar 

  21. Burkey AR, Carstens E, Wenniger JJ, Tang J, Jasmin L. An opioidergic corticalantinociception triggering site in the agranular insular cortex of the rat thatcontributes to morphine antinociception. J Neurosci. 1996;16(20):6612–23.

    Article  CAS  PubMed  Google Scholar 

  22. Chu Sin Chung P, Kieffer BL. Delta opioid receptors in brain function anddiseases. Pharmacol Ther. 2013;140(1):112–20. https://doi.org/10.1016/j.pharmthera.2013.06.003.

    Article  PubMed  CAS  Google Scholar 

  23. Watson CJ. Insular balance of glutamatergic and GABAergic signaling modulates pain processing. Pain. 2016;157(10):2194–207. https://doi.org/10.1097/j.pain.0000000000000615.

    Article  PubMed  CAS  Google Scholar 

  24. Fujita S, Koshikawa N, Kobayashi M. GABA(B) receptors accentuate neural excitation contrast in rat insular cortex. Neuroscience. 2011;199:259–71. https://doi.org/10.1016/j.neuroscience.2011.09.043.

    Article  PubMed  CAS  Google Scholar 

  25. Mutschler I, Wieckhorst B, Kowalevski S, Derix J, Wentlandt J, Schulze-Bonhage A, et al. Functional organization of the human anterior insular cortex. Neurosci Lett. 2009;457(2):66–70. https://doi.org/10.1016/j.neulet.2009.03.101.

    Article  PubMed  CAS  Google Scholar 

  26. Frank S, Kullmann S, Veit R. Food related processes in the insular cortex. Front Hum Neurosci. 2013;7:499. https://doi.org/10.3389/fnhum.2013.00499.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aydın, H.E., Kaya, İ. (2018). Insular Pharmacology. In: Turgut, M., Yurttaş , C., Tubbs, R. (eds) Island of Reil (Insula) in the Human Brain. Springer, Cham. https://doi.org/10.1007/978-3-319-75468-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75468-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75467-3

  • Online ISBN: 978-3-319-75468-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics