Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

  • 1206 Accesses

Abstract

Chapter 1 introduces the topic of solid oxide fuel cells, setting out the principles of operation and the governing equations used to compute the balances. Depending on the level of detail required, these equations can be reduced to discrete forms, can be simplified under certain assumptions or substituted by alternative mathematical descriptions. Some modeling techniques go as far as omitting the equations altogether. Alternative methods are often proposed to predict cell and stack performance and perform mass, energy, and charge balances instead of using a purely analytical approach and the governing equations. This chapter looks at the different modeling approaches and discusses the method which was found to be best suited to system-level studies in SOFC-based power systems. Development of a SOFC-based power units is usually an iterative procedure in which modeling is coupled with a conceptual phase which includes a definition of the design. This chapter will present different modeling methods applicable to SOFC-based power systems. Selected approaches are discussed and evaluated for the purpose of analysis of a micro-CHP unit with SOFCs. It also highlights the main parameters affecting the performance of SOFC stacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ang SMC, Fraga ES, Brandon NP et al (2011) Fuel cell systems optimisation methods and strategies. Int J Hydrogen Energ 36:14678–14703

    Article  Google Scholar 

  2. Grew KN, Chiu WKS (2012) A review of modeling and simulation techniques across the length scales for the solid oxide fuel cell. J Power Sources 199:1–13

    Article  Google Scholar 

  3. Kakac S, Pramuanjaroenkij A, Zhou XY (2007) A review of numerical modeling of solid oxide fuel cells. Int J Hydrogen Energ 32(7):761–786

    Article  Google Scholar 

  4. Badyda K (2001) Selected aspects of mathematical modeling of power systems. Prace naukowe Politechniki Warszawskiej, Oficyna Wydawnicza Politechniki Warszawskiej, vol 108 [in Polish]

    Google Scholar 

  5. Kupecki J (2015) Off-design analysis of a micro-CHP unit with solid oxide fuel cells fed by DME. Int J Hydrogen Energ 40(35):12009–12022

    Article  Google Scholar 

  6. Kupecki J, Milewski J, Jewulski J (2013) Investigation of SOFC material properties for plant-level modeling. Cent Eur J Chem 11(5):664–671

    Google Scholar 

  7. Kracz M (2009) From 0D to 1D modeling of tubular solid oxide fuel cell. Energ Convers Manage 50:2307–2315

    Article  Google Scholar 

  8. Bove R, Ubertiti S (2006) Modeling solid oxide fuel cell operation: approaches, techniques and results. J Power Sources 159(1):543–559

    Article  Google Scholar 

  9. Lisbona P, Corradetti A, Bove R et al (2007) Analysis of a solid oxide fuel cell system for combined heat and power applications under non-nominal conditions. Electrochim Acta 53:1920–1930

    Article  Google Scholar 

  10. Cali M, Santarelli MGL, Leone P (2006) Computer experimental analysis of the CHP performance of a 100 kWe SOFC field unit by a factorial design. J Power Sources 156:400–413

    Article  Google Scholar 

  11. Kupecki J, Jewulski J. Milewski J (2012) Multi-level mathematical modeling of solid oxide fuel cells. In: Clean energy for better environment. Intech, Rijeka, Croatia, pp 53–85. https://doi.org/10.5772/50724

    Google Scholar 

  12. Lai K, Koeppel BJ, Sil Choi K et al (2011) A quasi-two-dimensional electrochemistry modeling tool for planar solid oxide fuel cell stacks. J Power Sources 196:3204–3222

    Article  Google Scholar 

  13. Mahcene H, Moussa HB, Bouguettaia H et al (2011) Study of species, temperature distributions and the solid oxide fuel cells performance in a 2D model. Int J Hydrogen Energ 36:4244–4252

    Article  Google Scholar 

  14. Jewulski J, Blesznowski M, Stepien M (2009) Flow distribution analysis of the solid oxide fuel cell stack under electric load conditions. In: Proceeding of 9th European solid oxide fuel cell forum, Lucerne, Switzerland

    Google Scholar 

  15. Achenbach E (1994) Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack. J Power Sources 49:333–348

    Article  Google Scholar 

  16. Tanaka T, Inui Y, Urata A et al (2007) Three dimensional analysis of planar solid oxide fuel cell stack considering radiation. Energ Convers Manage 48(1491):1498

    Google Scholar 

  17. Kattke KJ, Braun RJ, Colclasure AM et al (2011) High-fidelity stack and system modeling for tubular solid oxide fuel cell system design and thermal management. J Power Sources 196:3790–3802

    Article  Google Scholar 

  18. Sorrentino M, Pianese C (2009) Control oriented modeling of solid oxide fuel cell auxiliary power unit for transportation applications. ASME Transactions. J Fuel Cell Sci Tech 6(4):04011

    Article  Google Scholar 

  19. Lu N, Li Q, Sun X (2006) The modeling of a standalone solid-oxide fuel cell auxiliary power unit. J Power Sources 161(2):938–948

    Article  Google Scholar 

  20. Chan SH, Ding OL (2005) Simulation of a solid oxide fuel cell power system fed by methane. Int J Hydrogen Energ 30(2):167–179

    Article  Google Scholar 

  21. Petruzzi L, Cocchi S, Fineschi F (2003) A global thermos-electrochemical model for SOFC systems design and engineering. J Power Sources 118:96–107

    Article  Google Scholar 

  22. Kattke KJ, Braun RJ (2011) Implementing thermal management modeling into SOFC system level design. J Fuel Cell Sci Tech 8(021009):1–12

    Google Scholar 

  23. Milewski J (2012) A mathematical model of SOFC: a proposal. Fuel Cells 12(5):709–721

    Article  Google Scholar 

  24. Asinari P, Quaglia MC, von Spakovsky MR et al (2007) Direct numerical calculation of the kinematic tortuosity of reactive mixture flow in the anode layer of solid oxide fuel cells by the lattice boltzmann method. J Power Sources 170(2):359–375

    Article  Google Scholar 

  25. Andersson M, Yuan J, Sunden B (2010) Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. Appl Energ 87(5):1461–1476

    Article  Google Scholar 

  26. Zhao F, Virkar AV (2005) Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. J Power Sources 141(1):79–95

    Article  Google Scholar 

  27. Arpino F, Massarotti N (2009) Numerical simulation of mass and energy transport phenomena in solid oxide fuel cells. Energy 34(12):2033–2041

    Article  Google Scholar 

  28. Mauro A, Arpino F, Massarotti N (2011) Three-dimensional simulation of heat and mass transport phenomena in planar SOFCs. Int J Hydrogen Energ 36(12):10288–10301

    Article  Google Scholar 

  29. Akhtar N, Decent SP, Kendall K (2010) Numerical modelling of methane-powered microtubular, single-chamber solid oxide fuel cell. J Power Sources 195(23):7796–7807

    Article  Google Scholar 

  30. Bhattacharyya D, Rengaswamy R, Finnerty C (2009) Dynamic modeling and validation studies of a tubular solid oxide fuel cell. Chem Eng Sci 64(9):2158–2172

    Article  Google Scholar 

  31. Serincan MF, Pasaogullari U, Sammes NM (2009) Effects of operating conditions on the performance of a micro-tubular solid oxide fuel cell (SOFC). J Power Sources 192(2):414–422

    Article  Google Scholar 

  32. Bhattacharyya D, Rengaswamy R, Finnerty C (2007) Isothermal models for anode supported tubular solid oxide fuel cells. Chem Eng Sci 62(16):4250–4267

    Article  Google Scholar 

  33. Bhattacharyya D, Rengaswamy R (2010) Dimensional optimization of a tubular solid oxide fuel cell. Comp Chem Eng 34(11):1789–1802

    Article  Google Scholar 

  34. Wang H, Gopalan S, Pal UB (2011) Hydrogen generation and separation using Gd0:2Ce0:8O1:9-Gd0:08Sr0:88Ti0:95Al0:05O3 mixed ionic and electronic conducting membranes. Electrochim Acta 56(20):6989–6996

    Article  Google Scholar 

  35. Park K, Yu S, Bae J et al (2010) Fast performance degradation of SOFC caused by cathode delamination in long-term testing. Int J Hydrogen Energ 35(16):8670–8677

    Article  Google Scholar 

  36. Goldin G, Zhu H, Kee RJ (2009) Multidimensional flow, thermal, and chemical behavior in solid-oxide fuel cell button cells. J Power Sources 187(1):123–135

    Article  Google Scholar 

  37. Shearing PR, Cai Q, Golbert JI (2010) Microstructural analysis of a solid oxide fuel cell anode using focused ion beam techniques coupled with electrochemical simulation. J Power Sources 195(15):4804–4810

    Article  Google Scholar 

  38. Gazzarri JI, Kesler O (2007) Non-destructive delamination detection in solid oxide fuel cells. J Power Sources 167(2):430–441

    Article  Google Scholar 

  39. Yoon KJ, Zink P, Gopalan S (2007) Polarization measurements on single-step co-fired solid oxide fuel cells (SOFCs). J Power Sources 172(1):39–49

    Article  Google Scholar 

  40. Hao Y, Shao Z, Mederos J (2006) Recent advances in single-chamber fuel-cells: experiment and modeling. Sol Sta Ion 177(19–25):2013–2021

    Article  Google Scholar 

  41. Wilson JR, Cronin JS, Duong AT et al (2010) Effect of composition of La0:8Sr0:2MnO3-Y2O3-stabilized ZrO2 cathodes: correlating three-dimensional microstructure and polarization resistance. J Power Sources 195(7):1829–1840

    Article  Google Scholar 

  42. Huang CM, Shy SS, Chien CW (2010) Parametric study of anodic microstructures to cell performance of planar solid oxide fuel cell using measured porous transport properties. J Power Sources 195(8):2260–2265

    Article  Google Scholar 

  43. Milewski J, Miller A, Salacinski J (2007) Off-design analysis of SOFC hybrid system. Int J Hydrogen Energ 32(6):687–698

    Article  Google Scholar 

  44. Milewski J, Swirski K, Santarelli M (2010) Advanced methods of solid oxide fuel cell modeling. Springer, Berlin

    Google Scholar 

  45. Leone P (2010) Advanced methods of solid oxide fuel cell modeling. Springer, Berlin

    Google Scholar 

  46. Bove R, Lunghi P, Sammes NM (2005) SOFC mathematic model for systems simulations. Part one: from a micro-detailed to macro-black-box model. Int J Hydrogen Energ 30:181–187

    Article  Google Scholar 

  47. Virkar AV (2005) Theoretical analysis of the role of interfaces in transport through oxygen ion and electron conducting membranes. J Power Sources 147:8–31

    Article  Google Scholar 

  48. Kupecki J, Skrzypkiewicz M, Wierzbicki M et al (2017) Experimental and numerical analysis of a serial connection of two SOFC stacks in a micro-CHP system fed by biogas. Int J Hydrogen Energ 42(5):3487–3497

    Article  Google Scholar 

  49. Kupecki J, Milewski J, Szczesniak A et al (2015) Dynamic numerical analysis of cross-, co-, and counter-current flow configurations of a 1 kW-class solid oxide fuel cell stack. Int J Hydrogen Energ 40(45):15834–15844

    Article  Google Scholar 

  50. Milewski J, Kupecki J, Szczesniak A et al (2015) The influence of electrolyte type on dynamic response of 1 kW-size SOFC stack. In: Cigolotti V (ed) Proceedings of the 6th European fuel cell Piero Lunghi conference, Naples, Italy, ISBN: 978-88-8286-324-1, p 17

    Google Scholar 

  51. Kupecki J, Motylinski K, Milewski J (In press) Dynamic analysis of direct internal reforming in a SOFC stack with electrolyte-supported cells using a quasi-1D model. Appl Energ

    Google Scholar 

  52. Steinberger-Wilckens R, Mubbala R (2012) Deliverable WP 6.4 final report: study on the integration of an SOFC system into the onboard electricity system of the biogas bus. Technical report, PLANET GbR Oldenburg

    Google Scholar 

  53. Nikonowicz L, Milewski J (2011) Determination of electronic conductance of solid oxide fuel cells. J Power Technol 91(2):82–92

    Google Scholar 

  54. Milewski J, Swiercz T, Badyda K et al (2010) The control strategy for a molten carbonate fuel cell hybrid system. Int J Hydrogen Energ 35(7):2997–3000

    Article  Google Scholar 

  55. Milewski J, Wolowicz M, Miller A (2013) A reduced order model of molten carbonate fuel cell: a proposal. Int J Hydrogen Energ 38(26):11565–11575

    Article  Google Scholar 

  56. Milewski J, Discepoli G, Desideri U (2014) Modeling the performance of MCFC for various fuel and oxidant compositions. Int J Hydrogen Energ 39(22):11713–11721

    Article  Google Scholar 

  57. Trendewicz A, Milewski J (2012) An innovative method of modeling direct methanol fuel cells. J Power Technol 92(1):20–26

    Google Scholar 

  58. Kupecki J, Motylinski K, Skrzypkiewicz M et al (2016) Investigation of dynamic operation of two SOFC stacks in serial connection with common fuel line. In: Proceedings of XXI world hydrogen energy conference (WHEC 2016), Zaragoza, Spain, pp 470

    Google Scholar 

  59. Zieleniak A, Jewulski J (2008) Internal project report: experimental analysis of AS-SOFC cells #09/2008, Institute of Power Engineering

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Kupecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kupecki, J., MotyliƄski, K. (2018). Modeling of SOFC-Based Power Systems. In: Kupecki, J. (eds) Modeling, Design, Construction, and Operation of Power Generators with Solid Oxide Fuel Cells. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-75602-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75602-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75601-1

  • Online ISBN: 978-3-319-75602-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics