Skip to main content

Geochemical Properties

  • Chapter
  • First Online:
Fine Scale Characterization of Shale Reservoirs

Part of the book series: SpringerBriefs in Petroleum Geoscience & Engineering ((BRIEFSPGE))

  • 395 Accesses

Abstract

Shale reservoirs with organic-rich intervals are often characterized by high quantities of kerogen, bitumen and also moveable hydrocarbons. Despite lots of conducted studies to improve understanding of the shale characteristics, kerogen, as one the main constituents of mudrocks, is not thoroughly understood. Understanding organic matter properties in terms of maturity, content, and type are crucial for the development of unconventional reservoirs. Studies also showed the presence of organic matter has a non-negligible effect on hydraulic fracturing operations. In this chapter, organic matter characterization by conventional methods along with a new analytical method known as Raman spectroscopy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghajanpour A, Fallahzadeh SH, Khatibi S, Hossain MM, Kadkhodaie A (2017) Full waveform acoustic data as an aid in reducing uncertainty of mud window design in the absence of leak-off test. J Nat Gas Sci Eng 45:786–796

    Google Scholar 

  • Amer M (2009) Raman spectroscopy for soft matter applications. Wiley, USA

    Google Scholar 

  • Behar F, Beaumont V, Penteado HDB (2001) Rock-Eval 6 technology: performances and developments. Oil Gas Sci Technol 56:111–134

    Google Scholar 

  • Beyssac O, Goffé B, Chopin C, Rouzaud J (2002) Raman spectra of carbonaceous material in metasediments: a new geothermometer. J Metamorph Geol 20:859–871

    Google Scholar 

  • Beyssac O, Goffé B, Petitet J-P, Froigneux E, Moreau M, Rouzaud JN (2003) On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochim Acta A 59(10):2267–2276

    Google Scholar 

  • Bustin R (1996) Mechanisms of graphite formation from kerogen: experimental evidence. In: Fuel and energy abstracts. Elsevier, p 187

    Google Scholar 

  • Carvajal-Ortiz H, Gentzis T (2015) Critical considerations when assessing hydrocarbon plays using Rock-Eval pyrolysis and organic petrology data: data quality revisited. Int J Coal Geol 152:113–122

    Article  Google Scholar 

  • Cesare B, Maineri C (1999) Fluid-present anatexis of metapelites at El Joyazo (SE Spain): constraints from Raman spectroscopy of graphite. Contrib Minerl Petrol 135:41–52

    Article  Google Scholar 

  • Chen Y, Zou C, Mastalerz M, Suyun H, Gasaway C, Tao X (2015) Applications of micro-fourier transform infrared spectroscopy (FTIR) in the geological sciences—a review. Int J Mol Sci 16(12):30223–30250

    Article  Google Scholar 

  • Diessel C, Brothers R, Black P (1978) Coalification and graphitization in high-pressure schists in New Caledonia. Contrib Minerl Petrol 68:63–78

    Article  Google Scholar 

  • Dietrich AB (2015) The impact of organic matter on geomechanical properties and elastic anisotropy in the Vaca Muerta shale. PhD dissertation, Colorado School of Mines, Arthur Lakes Library

    Google Scholar 

  • Eliyahu M, Emmanuel S, Day-Stirrat RJ, Macaulay CI (2015) Mechanical properties of organic matter in shales mapped at the nanometer scale. Mar Pet Geol 59:294–304

    Article  Google Scholar 

  • Emmanuel S, Eliyahu M, Day-Stirrat RJ, Hofmann R, Macaulay CI (2016) Impact of thermal maturation on nano-scale elastic properties of organic matter in shales. Mar Pet Geol 70:175–184

    Article  Google Scholar 

  • Espitalie J, Deroo G, Marquis F (1985) Rock-Eval pyrolysis and its applications. Rev De L Institut Fr Du Pet 40:563–579

    Article  Google Scholar 

  • Gao Y, Zou Y-R, Liang T, Peng PA (2017) Jump in the structure of type I kerogen revealed from pyrolysis and 13C DP MAS NMR. Org Geochem 112:105–118

    Article  Google Scholar 

  • Hackley PC, Araujo CV, Borrego AG, Bouzinos A, Cardott BJ, Cook AC, Eble C, Flores D, Gentzis T, Gonçalves PA (2015) Standardization of reflectance measurements in dispersed organic matter: results of an exercise to improve interlaboratory agreement. Mar Pet Geol 59:22–34

    Article  Google Scholar 

  • Huang E-P, Huang E, Yu S-C, Chen Y-H, Lee J-S, Fang J-N (2010) In situ Raman spectroscopy on kerogen at high temperatures and high pressures. Phys Chem Miner 37:593–600

    Article  Google Scholar 

  • Hutton A, Bharati S, Robl T (1994) Chemical and petrographic classification of kerogen/macerals. Energy Fuels 8:1478–1488

    Article  Google Scholar 

  • Jacob H (1989) Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”). Int J Coal Geol 11:65–79

    Article  Google Scholar 

  • Jarvie D, Claxton B, Henk B, Breyer J (2001) Oil and shale gas from Barnett shale, Ft. In: Worth basin, TX, poster presented at the AAPG national convention, Denver, CO

    Google Scholar 

  • Kelemen S, Fang H (2001) Maturity trends in Raman spectra from kerogen and coal. Energy Fuels 15:653–658

    Google Scholar 

  • Khatibi S, Ostadhassan M, Tuschel D, Gentzis T, Bubach B, Carvajal-Ortiz H (2018) Raman spectroscopy to study thermal maturity and elastic modulus of kerogen. Int J Coal Geol 185:103–118

    Google Scholar 

  • Lafargue E, Marquis F, Pillot D (1998) Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Rev De L’Institut Fr Du Pét 53:421–437

    Google Scholar 

  • Li C, Ostadhassan M, Kong L (2017) Nanochemo-mechanical characterization of organic shale through AFM and EDS. In: 2017 SEG international exposition and annual meeting. Society of Exploration Geophysicists

    Google Scholar 

  • Marshall CP, Edwards HG, Jehlicka J (2010) Understanding the application of Raman spectroscopy to the detection of traces of life. Astrobiology 10:229–243

    Google Scholar 

  • Mitra SS (1962) Vibration spectra of solids. In: Solid state physics, vol 13. Academic Press, pp 1–80

    Google Scholar 

  • Oberlin A, Boulmier J, Villey M (1980) Electron microscopic study of kerogen microtexture. Selected criteria for determining the evolution path and evolution stage of kerogen. In: Kerogen: Insoluble organic matter from sedimentary rocks. Editions Technip, Paris, pp 191–241

    Google Scholar 

  • Pan J, Meng Z, Hou Q, Ju Y, Cao Y (2013) Coal strength and Young’s modulus related to coal rank, compressional velocity and maceral composition. J Struct Geol 54:129–135

    Article  Google Scholar 

  • Peters K (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull 70:318–329

    Google Scholar 

  • Quirico E, Rouzaud J-N, Bonal L, Montagnac G (2005) Maturation grade of coals as revealed by Raman spectroscopy: progress and problems. Spectrochim Acta Part A Mol Biomol Spectrosc 61:2368–2377

    Article  Google Scholar 

  • Reich S, Thomsen C (2004) Raman spectroscopy of graphite. Philos Trans R Soc Lond A Math Phys Eng Sci 362:2271–2288

    Google Scholar 

  • Rouzaud J, Oberlin A (1989) Structure, microtexture, and optical properties of anthracene and saccharose-based carbons. Carbon 27:517–529

    Article  Google Scholar 

  • Sauerer B, Craddock PR, AlJohani MD, Alsamadony KL, Abdallah W (2017) Fast and accurate shale maturity determination by Raman spectroscopy measurement with minimal sample preparation. Int J Coal Geol 173:150–157

    Article  Google Scholar 

  • Schenk H, Witte E, Müller P, Schwochau K (1986) Infrared estimates of aliphatic kerogen carbon in sedimentary rocks. Org Geochem 10:1099–1104

    Article  Google Scholar 

  • Schito A, Romano C, Corrado S, Grigo D, Poe B (2017) Diagenetic thermal evolution of organic matter by Raman spectroscopy. Org Geochem 106:57–67

    Google Scholar 

  • Tuschel D (2013) Raman spectroscopy of oil shale. Spectroscopy 28:5

    Google Scholar 

  • Wang Y, Alsmeyer DC, McCreery RL (1990) Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem Mater 2:557–563

    Google Scholar 

  • Witte E, Schenk H, Müller P, Schwochau K (1988) Structural modifications of kerogen during natural evolution as derived from 13C CP/MAS NMR, IR spectroscopy and Rock-Eval pyrolysis of Toarcian shales. Org Geochem 13:1039–1044

    Google Scholar 

  • Wopenka B, Pasteris JD (1993) Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy. Am Mineral 78:533–557

    Google Scholar 

  • Zargari S, Prasad M, Mba KC, Mattson E (2011) Organic maturity, hydrous pyrolysis, and elastic property in shales. In: Canadian unconventional resources conference. Society of Petroleum Engineers

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ostadhassan .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ostadhassan, M., Liu, K., Li, C., Khatibi, S. (2018). Geochemical Properties. In: Fine Scale Characterization of Shale Reservoirs. SpringerBriefs in Petroleum Geoscience & Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-76087-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76087-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76086-5

  • Online ISBN: 978-3-319-76087-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics