Skip to main content

Central Nervous System

  • Chapter
  • First Online:
Nuclear Medicine Companion

Abstract

Brain perfusion SPECT is used for assessment of brain death, cerebral ischemia, stroke, and trauma, lateralization and localization of epileptogenic foci in presurgical patients, early detection of Alzheimer’s disease (AD), and differentiating AD from other dementias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kapucu OL, Nobili F, Varrone A, Booij J, Vander Borght T, e t a (2009) EANM procedure guideline for brain perfusion SPECT using 99mTc-labelled radiopharmaceuticals, version 2. Eur J Nucl Med Mol Imaging 36:2093–2102

    Article  CAS  PubMed  Google Scholar 

  2. Juni JE, Waxman AD, Devous MD Sr, Tikofsky RS, Ichise M et al (2009) Procedure guideline for brain perfusion SPECT using (99m)Tc radiopharmaceuticals 3.0. J Nucl Med Technol 37:191–195

    Article  PubMed  Google Scholar 

  3. Véra P, Kaminska A, Cieuta C, Hollo A, Stiévenart JL et al (1999) Use of subtraction ictal SPECT co-registered to MRI for optimizing the localization of seizure foci in children. J Nucl Med 40:786–792

    PubMed  Google Scholar 

  4. Packard AB, Roach PJ, Davis RT, Carmant L, Davis R et al (1996) Ictal and interictal technetium-99m-bicisate brain SPECT in children with refractory epilepsy. J Nucl Med 37:1101–1106

    PubMed  CAS  Google Scholar 

  5. Cikrit DF, Dalsing MC, Harting PS, Burt RW, Lalka SG et al (1997) Cerebral vascular reactivity assessed with acetazolamide single photon emission computer tomography scans before and after carotid endarterectomy. Am J Surg 174:193–197

    Article  CAS  PubMed  Google Scholar 

  6. Society of Nuclear Medicine Procedure Guideline for FDG PET Brain Imaging Version 1.0, approved February 8, 2009

    Google Scholar 

  7. Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F et al (2009) EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 36:2103–2110

    Article  PubMed  Google Scholar 

  8. Stanescu L, Ishak GE, Khanna PC, Biyyam DR, Shaw DW et al (2013) FDG PET of the brain in pediatric patients: imaging spectrum with MR imaging correlation. Radiographics 33:1279–1303

    Article  PubMed  Google Scholar 

  9. Chugani HT, Phelps ME (1991) Imaging human brain development with positron emission tomography. J Nucl Med 32:23–26

    PubMed  CAS  Google Scholar 

  10. Kennedy C, Sokoloff L (1957) An adaptation of the nitrous oxide method to the study of the cerebral circulation in children: normal values for cerebral blood flow and cerebral metabolic rate in childhood. J Clin Invest 36:1130–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Herholz K, Salmon E, Perani D, Baron JC, Holthoff V et al (2002) Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. NeuroImage 17:302–316

    Article  CAS  PubMed  Google Scholar 

  12. Loessner A, Alavi A, Lewandrowski KU, Mozley D, Souder E et al (1995) Regional cerebral function determined by FDG-PET in healthy volunteers: normal patterns and changes with age. J Nucl Med 36:1141–1149

    PubMed  CAS  Google Scholar 

  13. Moeller JR, Ishikawa T, Dhawan V, Spetsieris P, Mandel F et al (1996) The metabolic topography of normal aging. J Cereb Blood Flow Metab 16:385–398

    Article  CAS  PubMed  Google Scholar 

  14. Garibotto V, Heinzer S, Vulliemoz S, Guignard R, Wissmeyer M et al (2013) Clinical applications of hybrid PET/MRI in neuroimaging. Clin Nucl Med 38:e13–e18

    Article  PubMed  Google Scholar 

  15. Abdel-Dayem HM, Elgazzar AH (1989) The determination of death and the changing role of medical imaging. Radiographics 9:650–651

    Article  CAS  PubMed  Google Scholar 

  16. Donohoe KJ, Agrawal G, Frey KA, Gerbaudo VH, Mariani G et al (2012) SNM practice guideline for brain death scintigraphy 2.0. J Nucl Med Technol 40:198–203

    Article  PubMed  Google Scholar 

  17. Al-Shammri S, Al-Feeli M (2004) Confirmation of brain death using brain radionuclide perfusion imaging technique. Med Princ Pract 13:267–272

    Article  CAS  PubMed  Google Scholar 

  18. Momose T, Nishikawa J, Watanabe T, Ohtake T, Sasaki Y et al (1992) Clinical application of 18F-FDG-PET in patients with brain death. Kaku Igaku 29:1139–1142

    PubMed  CAS  Google Scholar 

  19. Booij J (2008) [123I]FP-CIT SPECT: potential effects of drugs. Eur J Nucl Med Mol Imaging 35:424–438

    Article  CAS  PubMed  Google Scholar 

  20. Djang DS, Janssen MJ, Bohnen N, Booij J, Henderson TA et al (2012) SNM practice guideline for dopamine transporter imaging with 123I-ioflupane SPECT 1.0. J Nucl Med 53:154–163

    Article  CAS  PubMed  Google Scholar 

  21. Jennings DL, Seibyl JP, Oakes D, Eberly S, Murphy J et al (2004) (123I) beta-CIT and single-photon emission computed tomographic imaging vs clinical evaluation in parkinsonian syndrome: unmasking an early diagnosis. Arch Neurol 61:1224–1229

    Article  PubMed  Google Scholar 

  22. McKusick KA, Malmud LS, Kordela PA, Wagner HN Jr (1973) Radionuclide cisternography: normal values for nasal secretion of intrathecally injected 111In-DTPA. J Nucl Med 14:933–934

    PubMed  CAS  Google Scholar 

  23. Grantham VV, Blakley B, Winn J (2006) Technical review and considerations for a cerebrospinal fluid leakage study. J Nucl Med Technol 34:48–51

    PubMed  Google Scholar 

  24. Nuclear Pharmacy, College of Pharmacy, University of Arkansas for Medical Sciences. List of drug interactions with radiopharmaceuticals. http://nuclearpharmacy.uams.edu/resources/. Accessed 5 Jan 2006

  25. Mettler FA Jr, Guiberteau MJ (1998) Cerebrovascular system. In: Essentials of nuclear medicine imaging, 4th edn. W.B. Saunders Company, p 101

    Google Scholar 

  26. MacDonald A, Burrell S (2009) Infrequently performed studies in nuclear medicine: part 2. J Nucl Med Technol 37:1–13

    Article  PubMed  Google Scholar 

  27. Ashraf R, Sostre S (1995) Differing scintigraphic patterns of lumboperitoneal shunt dysfunction in patients with normal pressure hydrocephalus and pseudotumor cerebri. Clin Nucl Med 20:140–146

    Article  CAS  PubMed  Google Scholar 

  28. Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S et al (1996) Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 334:752–758

    Article  CAS  PubMed  Google Scholar 

  29. Small GW, Ercoli LM, Silverman DH, Huang SC, Komo S et al (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 97:6037–6042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mosconi L, Rinne JO, Tsui WH, Murray J, Li Y et al (2013) Amyloid and metabolic positron emission tomography imaging of cognitively normal adults with Alzheimer’s parents. Neurobiol Aging 34:22–34

    Article  CAS  PubMed  Google Scholar 

  31. Arnaiz E, Jelic V, Almkvist O, Wahlund LO, Winblad B et al (2001) Impaired cerebral glucose metabolism and cognitive functioning predict deterioration in mild cognitive impairment. Neuroreport 12:851–855

    Article  CAS  PubMed  Google Scholar 

  32. Yuan Y, Gu ZX, Wei WS (2009) Fluorodeoxyglucose-positron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment: a meta-analysis. Am J Neuroradiol 30:404–410

    Article  CAS  PubMed  Google Scholar 

  33. Mountz JM, San Pedro EC (2015) Nuclear medicine imaging of CNS: basis of clinical applications. In: Elgazzar AH (ed) The pathophysiologic basis of nuclear medicine, 3rd edn. Springer, p 634

    Google Scholar 

  34. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–319

    Article  CAS  PubMed  Google Scholar 

  35. Wong DF, Rosenberg PB, Zhou Y, Kumar A, Raymont V et al (2010) In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected] F 18). J Nucl Med 51:913–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Villemagne VL, Ong K, Mulligan RS, Holl G, Pejoska S et al (2011) Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J Nucl Med 52:1210–1217

    Article  PubMed  Google Scholar 

  37. Fodero-Tavoletti MT, Cappai R, McLean CA, Pike KE, Adlard PA et al (2009) Amyloid imaging in Alzheimer’s disease and other dementias. Brain Imaging Behav 3:246–261

    Article  PubMed  Google Scholar 

  38. Rowe CC, Ellis KA, Rimajova M, Bourgeat P, Pike KE et al (2010) Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging 31:1275–1283

    Article  PubMed  Google Scholar 

  39. Cairns NJ, Ikonomovic MD, Benzinger T, Storandt M, Fagan AM et al (2009) Absence of Pittsburgh compound B detection of cerebral amyloid beta in a patient with clinical, cognitive, and cerebrospinal fluid markers of Alzheimer disease: a case report. Arch Neurol 66:1557–1562

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F et al (2013) Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis 34:457–468

    Article  PubMed  CAS  Google Scholar 

  41. Eisenmenger LB, Huo EJ, Hoffman JM, Minoshima S, Matesan MC et al (2016) Advances in PET imaging of degenerative, cerebrovascular, and traumatic causes of dementia. Semin Nucl Med 46(1):57–87

    Article  PubMed  Google Scholar 

  42. Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH et al (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia 51:676–685

    Article  PubMed  Google Scholar 

  43. Devous MD Sr, Thisted RA, Morgan GF, Leroy RF, Rowe CC (1988) SPECT brain imaging in epilepsy: a meta-analysis. J Nucl Med 39:285–293

    Google Scholar 

  44. Spencer SS (1994) The relative contributions of MRI SPECT and PET imaging in epilepsy. Epilepsia 35:S72–S89

    Article  PubMed  Google Scholar 

  45. Won HJ, Chang KH, Cheon JE, Kim HD, Lee DS et al (1999) Comparison of MR imaging with PET and ictal SPECT in 118 patients with intractable epilepsy. AJNR Am J Neuroradiol 20:593–599

    PubMed  CAS  Google Scholar 

  46. Mountz JM, San Pedro EC (2015) Nuclear medicine imaging of CNS: basis of clinical applications. In: Elgazzar AH (ed) The pathophysiologic basis of nuclear medicine, 3rd edn. Springer, p 639

    Google Scholar 

  47. Savic I, Ingvar M, Stone-Elander S (1993) Comparison of [11C]flumazenil and [18F]FDG as PET markers of epileptic foci. J Neurol Neurosurg Psychiatry 56:615–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Savic I, Thorell JO, Roland P (1995) [11C]flumazenil positron emission tomography visualizes frontal epileptogenic regions. Epilepsia 36:1225–1232

    Article  CAS  PubMed  Google Scholar 

  49. Szelies B, Weber-Luxenburger G, Pawlik G, Kessler J, Holthoff V et al (1996) MRI-guided flumazenil- and FDG-PET in temporal lobe epilepsy. NeuroImage 3:109–118

    Article  CAS  PubMed  Google Scholar 

  50. Vivash L, Gregoire MC, Lau EW, Ware RE, Binns D et al (2013) 18F-flumazenil: a γ-aminobutyric acid A-specific PET radiotracer for the localization of drug-resistant temporal lobe epilepsy. J Nucl Med 54:1270–1277

    Article  CAS  PubMed  Google Scholar 

  51. Guidelines for the diagnosis of brain death. Canadian Neurocritical Care Group. Can J Neurol Sci. 1999;26:64–66

    Google Scholar 

  52. Lee VW, Hauck RM, Morrison MC, Peng TT, Fischer E et al (1987) Scintigraphic evaluation of brain death: significance of sagittal sinus visualization. J Nucl Med 28:1279–1283

    PubMed  CAS  Google Scholar 

  53. Appelt EA, Song WS, Phillips WT, Metter DF, Salman UA et al (2008) The “hot nose” sign on brain death scintigraphy: where does the flow really go? Clin Nucl Med 33:55–57

    Article  PubMed  Google Scholar 

  54. Meyer MA (1996) Evaluating brain death with positron emission tomography: case report on dynamic imaging of 18F-fluorodeoxyglucose activity after intravenous bolus injection. J Neuroimaging 6:117–119

    Article  CAS  PubMed  Google Scholar 

  55. Derdeyn CP, Yundt KD, Videen TO, Carpenter DA, Grubb RL Jr et al (1998) Increased oxygen extraction fraction is associated with prior ischemic events in patients with carotid occlusion. Stroke 29:754–758

    Article  CAS  PubMed  Google Scholar 

  56. Eicker SO, Turowski B, Heiroth HJ, Steiger HJ, Hänggi D (2011) A comparative study of perfusion CT and 99m Tc-HMPAO SPECT measurement to assess cerebrovascular reserve capacity in patients with internal carotid artery occlusion. Eur J Med Res 16:484–490

    Article  PubMed  PubMed Central  Google Scholar 

  57. Knapp WH, von Kummer R, Kübler W (1986) Imaging of cerebral blood flow-to-volume distribution using SPECT. J Nucl Med 27:465–470

    PubMed  CAS  Google Scholar 

  58. Egge A, Sjøholm H, Waterloo K, Solberg T, Ingebrigtsen T et al (2005) Serial single-photon emission computed tomographic and transcranial doppler measurements for evaluation of vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery 57:237–242

    Article  PubMed  Google Scholar 

  59. Batjer HH, Devous MD Sr (1992) The use of acetazolamide-enhanced regional cerebral blood flow measurement to predict risk to arteriovenous malformation patients. Neurosurgery 31:213–217

    Article  CAS  PubMed  Google Scholar 

  60. De Roo M, Mortelmans L, Devos P, Verbruggen A, Wilms G et al (1989) Clinical experience with Tc-99m HM-PAO high resolution SPECT of the brain in patients with cerebrovascular accidents. Eur J Nucl Med 15:9–15

    Article  PubMed  Google Scholar 

  61. Burn DJ, Mark MH, Playford ED, Maraganore DM, Zimmerman TR Jr et al (1992) Parkinson’s disease in twins studied with 18F-dopa and positron emission tomography. Neurology 42:1894–1900

    Article  CAS  PubMed  Google Scholar 

  62. Piccini P, Morrish PK, Turjanski N, Sawle GV, Burn DJ et al (1997) Dopaminergic function in familial Parkinson’s disease: a clinical and 18F-dopapositron emission tomography study. Ann Neurol 41:222–229

    Article  CAS  PubMed  Google Scholar 

  63. Dentresangle C, Veyre L, Le Bars D, Pierre C, Lavenne F et al (1999) Striatal D2 dopamine receptor status in Parkinson’s disease: an [18F]dopa and [11C]raclopride PET study. Mov Disord 14:1025–1030

    Article  CAS  PubMed  Google Scholar 

  64. Rinne JO, Laihinen A, Rinne UK, Någren K, Bergman J et al (1993) PET study on striatal dopamine D2 receptor changes during the progression of early Parkinson’s disease. Mov Disord 8:134–138

    Article  CAS  Google Scholar 

  65. Kwon KY, Choi CG, Kim JS, Lee MC, Chung SJ (2007) Comparison of brain MRI and 18F-FDG PET in the differential diagnosis of multiple system atrophy from Parkinson’s disease. Mov Disord 22:2352–2358

    Article  PubMed  Google Scholar 

  66. Juh R, Pae CU, Lee CU, Yang D, Chung Y et al (2005) Voxel based comparison of glucose metabolism in the differential diagnosis of the multiple system atrophy using statistical parametric mapping. Neurosci Res 52:211–219

    Article  CAS  PubMed  Google Scholar 

  67. Lehericy S, Meunier S, Garnero L, Vidailhet M (2003) Dystonia: contributions of functional imaging and magnetoencephalography. Rev Neurol 159:874–879

    PubMed  CAS  Google Scholar 

  68. Lehéricy S, Tijssen MAJ, Vidailhet M, Kaji R, Meunier S (2013) The anatomical basis of dystonia: current view using neuroimaging. Mov Disord 28:944–957

    Article  PubMed  Google Scholar 

  69. Sung DH, Choi JY, Kim DH, Kim ES, Son YI et al (2007) Localization of dystonic muscles with 18F-FDG PET/CT in idiopathic cervical dystonia. J Nucl Med 48:1790–1795

    Article  PubMed  Google Scholar 

  70. Pourfar M, Feigin A, Tang CC, Carbon-Correll M, Bussa M et al (2011) Abnormal metabolic brain networks in Tourette syndrome. Neurology 76:944–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lerner A, Bagic A, Boudreau EA, Hanakawa T, Pagan F et al (2007) Neuroimaging of neuronal circuits involved in tic generation in patients with Tourette syndrome. Neurology 68:1979–1987

    Article  CAS  PubMed  Google Scholar 

  72. Patten DH, Benson DF (1968) Diagnosis of normal-pressure hydrocephalus by RISA cisternography. J Nucl Med 9:457–461

    PubMed  CAS  Google Scholar 

  73. James AE Jr, DeLand FH, Hodges FJ 3rd, Wagner HN Jr (1970) Normal-pressure hydrocephalus. Role of cisternography in diagnosis. JAMA 213:1615–1622

    Article  PubMed  Google Scholar 

  74. Thut DP, Kreychman A, Obando JA (2014) 111In-DTPA cisternography with SPECT/CT for the evaluation of normal pressure hydrocephalus. J Nucl Med Technol 42:70–74

    Article  PubMed  Google Scholar 

  75. Uvebrant P, Sixt R, Bjure J, Roos A (1992) Evaluation of cerebrospinal fluid shunt function in hydrocephalic children using 99mTc-DTPA. Childs Nerv Syst 8:76–80

    Article  CAS  PubMed  Google Scholar 

  76. Ouellette D, Lynch T, Bruder E, Everson E, Joubert G et al (2009) Additive value of nuclear medicine shuntograms to computed tomography for suspected cerebrospinal fluid shunt obstruction in the pediatric emergency department. Pediatr Emerg Care 25:827–830

    Article  PubMed  Google Scholar 

  77. Galynker II, Cai J, Ongseng F, Finestone H, Dutta E et al (1998) Hypofrontality and negative symptoms in major depressive disorder. J Nucl Med 39:608–612

    PubMed  CAS  Google Scholar 

  78. Newberg AB, Alavi A (2010) Role of PET in the investigation of neuropsychiatric disorders. PET Clin 5:223–242

    Article  PubMed  Google Scholar 

  79. Volkow ND, Wolf AP, Van Gelder P, Brodie JD, Overall JE et al (1987) Phenomenological correlates of metabolic activity in 18 patients with chronic schizophrenia. Am J Psychiatry 144:151–158

    Article  CAS  PubMed  Google Scholar 

  80. Wu JC, Buchsbaum MS, Hershey TG, Hazlett E, Sicotte N et al (1991) PET in generalized anxiety disorder. Biol Psychiatry 29:1181–1199

    Article  CAS  PubMed  Google Scholar 

  81. Volkow ND, Hitzemann R, Wolf AP, Logan J, Fowler JS et al (1990) Acute effects of ethanol on regional brain glucose metabolism and transport. Psychiatry Res 35:39–48

    Article  CAS  PubMed  Google Scholar 

  82. Baxter L, Schwartz J, Mazziotta J, Phelps ME, Pahl JJ et al (1988) Cerebral glucose metabolic rates in nondepressed patients with obsessive-compulsive disorder. Am J Psychiatry 145:1560–1563

    Article  PubMed  Google Scholar 

  83. Swedo SE, Schapiro MB, Grady CL, Cheslow DL, Leonard HL et al (1989) Cerebral glucose metabolism in childhood-onset obsessive compulsive disorder. Arch Gen Psychiatry 46:518–523

    Article  CAS  PubMed  Google Scholar 

  84. Mountz JM, Tolbert LC, Lill DW, Katholi CR, Liu HG (1995) Functional deficits in autistic disorder: characterization by technetium-99m-HMPAO and SPECT. J Nucl Med 36:1156–1162

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elgazzar, A.H., Sarikaya, I. (2018). Central Nervous System. In: Nuclear Medicine Companion. Springer, Cham. https://doi.org/10.1007/978-3-319-76156-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76156-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76155-8

  • Online ISBN: 978-3-319-76156-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics