Skip to main content

Momentum and Real-Space Study of Topological Semimetals and Topological Defects

  • Chapter
  • First Online:
Topological Matter

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 190))

Abstract

We draw a phenomenological analogy between the topological defect of a screw dislocation and the electronic Weyl semimetal topology class including their bulk and surface manifestations. In the bulk, both can be assigned a chirality which can be calculated from the crystallographic curvature of the screw dislocation or the Berry curvature of the Weyl bands. On the surface, the chiral screw dislocations give rise to open-contour surface modes in the form of a crystallographic step edge uniquely emanating from the screw termination. The bulk Weyl nodes induce surface Fermi-arc states that uniquely terminate at the surface projection of the bulk Weyl node. We use scanning tunneling microscopy to visualize the surface manifestation of both topological structures. The surface topology of the screw dislocation is visualized in the surface topography. The surface momentum-space topology of the Weyl semimetal is visualized and characterized spectroscopically using quasi-particle interference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Kelly, G.W. Groves, Crystallography and Crystal Defects (Addison-Wesley, Reading, 1970)

    Google Scholar 

  2. H. Kleinert, Gauge Fields in Condensed Matter. Volume II: Stresses and Defects (World Scientific Publishing company, Singapore, 1989)

    Book  Google Scholar 

  3. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders, Philadelphia, 1976)

    MATH  Google Scholar 

  4. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)

    Google Scholar 

  5. B.A. Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006)

    Article  ADS  Google Scholar 

  6. B.A. Bernevig, T.L. Hughes, Topological Insulators and Topological Superconductors (Princeton University Press, Princeton, 2013)

    Book  Google Scholar 

  7. X.L. Qi, S.C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  8. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  9. J. Maciejko, T.L. Hughes, S.C. Zhang, Ann. Rev. Condens. Matter Phys. 2, 31 (2011)

    Article  ADS  Google Scholar 

  10. M.Z. Hasan, J.E. Moore, Ann. Rev. Condens. Matter Phys. 2, 55 (2011)

    Article  ADS  Google Scholar 

  11. Y. Ando, L. Fu, Ann. Rev. Condens. Matter Phys. 6, 361 (2015)

    Article  ADS  Google Scholar 

  12. S. Murakami, New J. Phys. 9, 356 (2007)

    Article  Google Scholar 

  13. C. Fang, Y. Chen, H.Y. Kee, L. Fu, Phys. Rev. B 92, 081201(R) (2015)

    Google Scholar 

  14. S.M. Young et al., Phys. Rev. Lett. 108, 140405 (2012)

    Google Scholar 

  15. X. Wan, A.M. Turner, A. Vishwanath, S.Y. Savrasov, Phys. Rev. B 83, 205101 (2011)

    Google Scholar 

  16. H.B. Nielsen, M. Ninomiya, Phys. Lett. B 130, 389 (1983)

    Google Scholar 

  17. V. Aji, Phys. Rev. B 85, 241101 (2012)

    Google Scholar 

  18. M.F. Crommie, C.P. Lutz, D.M. Eigler, Nature 363, 524 (1993)

    Article  ADS  Google Scholar 

  19. L. Brgi, O. Jeandupeux, H. Brune, K. Kern, Phys. Rev. Lett. 82, 4516 (1999)

    Article  ADS  Google Scholar 

  20. B.G. Briner, Ph Hofmann, M. Doering, H.-P. Rust, E.W. Plummer, A.M. Bradshaw, Phys. Rev. B 58, 13931 (1998)

    Article  ADS  Google Scholar 

  21. J.E. Hoffman, K. McElroy, D.-H. Lee, K.M. Lang, H. Eisaki, S. Uchida, J.C. Davis, Science 297, 1148 (2002)

    Google Scholar 

  22. H. Inoue, A. Gyenis, Z. Wang, J. Li, S.W. Oh, S. Jiang, N. Ni, B.A. Bernevig, A. Yazdani, Science 351, 1184 (2016)

    Article  ADS  Google Scholar 

  23. R. Batabyal, N. Morali, N. Avraham, Y. Sun, M. Schmidt, C. Felser, A. Stern, B. Yan, H. Beidenkopf, Sci. Adv. 2, e1600709 (2016)

    Google Scholar 

  24. H. Zheng, S.-Y. Xu, G. Bian, C. Guo, G. Chang, D.S. Sanchez, I. Belopolski, C.-C. Lee, S.-M. Huang, X. Zhang, R. Sankar, N. Alidoust, T.-R. Chang, F. Wu, T. Neupert, F. Chou, H.-T. Jeng, N. Yao, A. Bansil, S. Jia, H. Lin, M.Z. Hasan, ACS Nano 10, 137 (2016)

    Google Scholar 

  25. D. Ke, G. Wan, P. Deng, K. Zhang, S. Ding, E. Wang, M. Yan, H. Huang, H. Zhang, Z. Xu, J. Denlinger, A. Fedorov, H. Yang, W. Duan, H. Yao, Y. Wu, S. Fan, H. Zhang, X. Chen, S. Zhou, Nat. Phys. 12, 1105 (2016)

    Google Scholar 

  26. J. Sangjun, B.B. Zhou, A. Gyenis, B.E. Feldman, I. Kimchi, A.C. Potter, Q.D. Gibson, R.J. Cava, A. Vishwanath, A. Yazdani, Nat. math. 13, 851 (2014)

    Google Scholar 

  27. H. Weng, C. Fang, Z. Fang, B.A. Bernevig, X. Dai, Phys. Rev. X 5, 011029 (2015)

    Google Scholar 

  28. Y. Sun, S.-C. Wu, B. Yan, Phys. Rev. B 92, 115428 (2015)

    Google Scholar 

  29. S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D.S. Sanchez, B.K. Wang, A. Bansil, F. Chou, P.P. Shibayev, H. Lin, S. Jia, M.Z. Hasan, Science 349, 613 (2015)

    Article  ADS  Google Scholar 

  30. B.Q. Lv, H.M. Weng, B.B. Fu, X.P. Wang, H. Miao, J. Ma, P. Richard, X.C. Huang, L.X. Zhao, G.F. Chen, Z. Fang, X. Dai, T. Qian, H. Ding, Phys. Rev. X 5, 031013 (2015)

    Google Scholar 

  31. L.X. Yang, Z.K. Liu, Y. Sun, H. Peng, H.F. Yang, T. Zhang, B. Zhou, Y. Zhang, Y.F. Guo, M. Rahn, D. Prabhakaran, Z. Hussain, S.-K. Mo, C. Felser, B. Yan, Y.L. Chen, Nat. Phys. 11, 728 (2015)

    Google Scholar 

Download references

Acknowledgements

HB acknowledges Rajib Batabyal, Noam Morali, Nurit Avraham, Yan Sun, Marcus Schmidt, Claudia Felser, Ady Stern, and Binghai Yan that participated in the study of TaAs, and Roni Ilan from many discussions as well as funding from the European Research Council (ERC) (Starter Grant no. 678702, TOPO-NW), the German-Israeli Foundation for Scientific Research and Development (GIF Grant no. I-1364-303.7/2016) and the Israeli Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim Beidenkopf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beidenkopf, H. (2018). Momentum and Real-Space Study of Topological Semimetals and Topological Defects. In: Bercioux, D., Cayssol, J., Vergniory, M., Reyes Calvo, M. (eds) Topological Matter. Springer Series in Solid-State Sciences, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-76388-0_10

Download citation

Publish with us

Policies and ethics