Skip to main content

Mechanical Properties

  • Chapter
  • First Online:
Thermal Cracking of Massive Concrete Structures

Abstract

Prediction of cracking by autogenous, drying shrinkage and thermal strain requires the knowledge of the development of mechanical properties. The main objective of this chapter is to describe the evolution of the mechanical properties, i.e., elastic properties, strengths, shrinkage, and creep, in cement-based materials. Mechanisms and experimental evidences are given thereafter. The influence of mix design, aging, stress level, cracking, etc., is reported. However, evolution of properties regarding interfaces in the case of prestress concrete, for instance, is not discussed (bond behavior). This chapter has strong interactions with the other chapters regarding the modeling (Chap. 2: hydration, Chap. 3: thermal strain, and Chap. 7: shrinkage, creep and cracking).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acker, P., & Ulm, F.-J. (2001). Creep and Shrinkage of concrete: Physical origins and practical measurements. Nuclear Engineering Design, 203, 143–158.

    Article  Google Scholar 

  • ACI Report 209, ACI Committee 209. (1992). ACI 209R-92: Prediction of creep, shrinkage, and temperature effects in concrete structures (Reapproved 1997).

    Google Scholar 

  • Aili, A. (2017). Shrinkage and creep of cement-based materials under multiaxial load: Poromechanical modeling for application in nuclear industry. Ph.D. thesis, University Paris Est (279 pp.).

    Google Scholar 

  • Aït-Mokhtar, A., et al. (20 authors). (2013). Experimental investigation of concrete variability. Cement and Concrete Research, 45, 21–36.

    Google Scholar 

  • Al-Kubaisy, M. A. (1975). Failure of concrete under sustained tension. Magazine of Concrete Research, 27(92), 171–178.

    Article  Google Scholar 

  • Aly, T., & Sanjayan, J. G. (2008). Shrinkage cracking properties of slag concretes with on-day curing. Magazine of Concrete Research, 60, 41–48.

    Article  Google Scholar 

  • Arthanari, S., & Yu, C. W. (1967). An analysis of the creep and shrinkage effects upon prestressed concrete members under temperature gradient and its application. Magazine of Concrete Research, 19(60), 157–164.

    Article  Google Scholar 

  • ASTM Standard C512, Standard Test Method for Creep of Concrete in Compression.

    Google Scholar 

  • ASTM Standard C1698, Standard Test Method for Autogenous Strain of Cement Paste and Mortar.

    Google Scholar 

  • ASTM Standard C469, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression.

    Google Scholar 

  • Atrushi, D. S. (2003). Tensile and compressive creep of early age concrete. Testing and modelling. Ph.D. thesis.

    Google Scholar 

  • Azenha, M. (2009). Numerical simulation of the structural behavior of concrete since its early ages. Ph.D. thesis report, Faculty of Engineering of the University of Porto, 2009.

    Google Scholar 

  • Azenha, M., Faria, R., & Ferreira, D. (2009). Identification of early-age concrete temperatures and strains: Monitoring and numerical simulation. Cement & Concrete Composites, 31, 369–378.

    Article  Google Scholar 

  • Baroghel-Bouny, V. (1994). Caractérisation des pâtes de ciment et des bétons, Méthodes, Analyse, Interprétation. Ph.D. thesis, Ecole Nationale des Ponts et Chaussées, France (467 pp.).

    Google Scholar 

  • Baroghel-Bouny, V., & Kheirbek, A. (2000). Effect of mix-parameters on autogenous deformations of cement pastes—Microstructural interpretations. In V. Baroghel-Bouny & P. C. Aïtcin (Eds.), Shrinkage Concrete-Shrinkage 2000, Proceedings of the International RILEM Workshop, PRO17, October 16–17, Paris (pp. 115–141).

    Google Scholar 

  • Baroghel-Bouny, V., Mounanga, P., Khelidj, A., Loukili, A., & Rafaï, N. (2006). Autogenous deformations of cement pastes: Part II. W/C effects, micro-macro correlations, and threshold values. Cement and Concrete Research, 36(1), 123–136.

    Article  Google Scholar 

  • Bassam, S. A., Yu, B-J., & Ansari, F. (2007). Fracture energy of concrete by maturity method. American Concrete Institute Materials Journal, Title no. 104-M10.

    Google Scholar 

  • Bažant, Z. P. (1977). Viscoelasticity of solidifying porous material—concrete. Journal of the Engineering Mechanics Division, ASCE, 103, 1049-10067; Disc., 1979, 725–728.

    Google Scholar 

  • Bažant, Z. P. (1984). Double-power logarithmic law for concrete creep. Cement and Concrete Research, 14, 793–806.

    Article  Google Scholar 

  • Bažant, Z. P., & Prasannan, S. (1989). Solidification theory for aging creep. I: Formulation. Journal of Engineering Mechanics, 115, 1670–1691.

    Google Scholar 

  • Bažant, Z. P. (1995). Creep and shrinkage prediction model for analysis and design of concrete structures—Model B-3. Materials and Structures, 28, 357–365.

    Article  Google Scholar 

  • Bažant, Z. P., Hauggaaed, A. B., Baweja, S., & Ulm, F. J. (1997). Microprestress-solidification theory for concrete creep. I: Aging and drying effects. Journal of Engineering Mechanics, 123(11), 1188–1194.

    Article  Google Scholar 

  • Beltzung, F., & Wittman, F. (2002). Influence of cement composition on endogenous shrinkage, Self-dessiccation and its importance in concrete technology. In Proceedings of the Third International Research Seminar, June 14–15, Lund, Sweden (pp. 113–125).

    Google Scholar 

  • Benboudjema, F., Meftah, F., & Torrenti, J.-M. (2005). Interaction between drying, shrinkage, creep and cracking phenomena in concrete. Engineering Structures, 27, 239–250.

    Article  Google Scholar 

  • Benboudjema, F., & Torrenti, J.-M. (2008). Early-age behaviour of concrete nuclear containments. Nuclear Engineering and Design, 238, 2495–2506.

    Article  Google Scholar 

  • Bentur, A., & Ish-Shalom, M. (1974). Properties of type K expensive cement of pure components. II. Proposed mechanism of ettringite formation and expansion in unrestrained paste of pure expansive component. Cement and Concrete Research, 4(5), 709–721.

    Article  Google Scholar 

  • Bernard, O., Ulm, F.-J., & Lemarchand, E. (2003). A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials. Cement and Concrete Research, 33, 1293–1309. https://doi.org/10.1016/S0008-8846(03)00039-5.

    Article  Google Scholar 

  • Bissonnette, B., Pigeon, M., & Vaysburd, A. M. (2007). Tensile creep of concrete: Study of its sensitivity to basic parameters. Materials Journal, 104(4), 360–368.

    Google Scholar 

  • Bjøntegaard, Ø., Hammer, T., & Sellevold, E. J. (2004). On the measurement of free deformation of early age cement paste and concrete. Cement & Concrete Composites, 26(5), 427–435.

    Article  Google Scholar 

  • Boivin, S. (1999). Retrait au jeune âge du béton: Développement d’une méthode expérimentale et contribution à l’analyse physique du retrait endogène. Ph.D. thesis, Ecole Nationale des Ponts et Chaussées, France, (249 pp.).

    Google Scholar 

  • Botassi, S. S., Silva Filho, L. C., & Calmon, J. L. (2012). Early-age creep of mass concrete: Effects of chemical and mineral admixtures. ACI Materials Journal, V(5), 109.

    Google Scholar 

  • Boulay, C., Crespini, M., Delsaute, B., & Staquet, S. (2012). Monitoring of the creep and the relaxation behaviour of concrete since setting time. Part 1: Compression. In SSCS 2012 Numerical Modelling Strategies for Sustainable Concrete Structures, May 29–June 1, Aix-en-Provence, France.

    Google Scholar 

  • Boulay, C., Staquet, S., Delsaute, B., Carette, J., Crespini, M., Yazoghli-Marzouk, O., et al. (2014). How to monitor the modulus of elasticity of concrete, automatically since the earliest age? Materials and Structures, 47(1), 141–155.

    Article  Google Scholar 

  • Boumiz, A., Vernet, C., & Cohen Tenoudji, F. (1996). Mechanical properties of cement pastes at early ages. Advanced Cement Based Materials, 3.

    Google Scholar 

  • Brazilian Standard NBR 6118, Projeto de estruturas de concreto - Procedimento. Rio de Janeiro (2014) (in Portuguese).

    Google Scholar 

  • Briffaut, M., Benboudjema, F., Torrenti, J.-M., & Nahas, G. (2011). Numerical analysis of the thermal active restrained shrinkage ring test to study the early age behavior of massive concrete structures. Engineering Structures, 33(4), 1390–1401.

    Article  Google Scholar 

  • Briffaut, M., Benboudjema, F., Torrenti, J.-M., & Nahas, G. (2012). Concrete early age basic creep: Experiments and test of rheological modelling approaches. Construction and Building Materials, 36, 373–380.

    Article  Google Scholar 

  • Briffaut, M., Benboudjema, F., & D’Aloia, L. (2016). Effect of fibers on early age cracking of tunnel concrete lining. Part II: Numerical simulations, Tunnelling and Underground Space Technology, 59, 221–229.

    Google Scholar 

  • Brooks, J. J., & Neville, A. M. A. (1977). comparison of creep, elasticity and strength of concrete in tension and in compression. Magazine of Concrete Research, 29(100), 131–141.

    Article  Google Scholar 

  • Browne, R., & Blundell, R. (1969). The influence of loading age and temperature on the long term creep behaviour of concrete in a sealed, moisture stable state. Materials and Structures, 2, 133–143.

    Google Scholar 

  • Buffo-Lacarrière, L., Sellier, A., & Kolani, B. (2014). Application of thermo-hydro-chemo-mechanical model for early age behaviour of concrete to experimental massive reinforced structures with strain–restraining system. European Journal of Environmental and Civil Engineering, 18(7), 814–827.

    Article  Google Scholar 

  • Buffo-Lacarrière, L., El Bitouri, Y., & Sellier, A. (2016). Modelling of ageing behaviour of Supplementary Cementitious Materials. In Materials, Systems and Structures in Civil Engineering. MSSCE2016 Proceedings, August 2016, Lyngby, Denmark.

    Google Scholar 

  • Byfors, J. (1980). Plain concrete at early ages. Stockholm: Swedish Cement and Concrete Research Institute.

    Google Scholar 

  • Carette J. (2015) Towards early age characterisation of eco-concrete containing blast-furnact slag and limestone filler, PhD Thesis, Université Libre de Bruxelles, BATir department.

    Google Scholar 

  • Carette, J., & Staquet, S. (2016). Monitoring and modelling the early age and hardening behaviour of eco-concrete through continuous non-destructive measurements: Part II. Mechanical behaviour, Cement and Concrete Composites, 73, 1–9.

    Article  Google Scholar 

  • Carette, J., Joseph, S., Cizer, Ö., & Staquet, S. (2017). Decoupling the autogenous swelling from the self-desiccation deformation in early age concrete with mineral additions: Micro-macro observations and unified modelling. Cement & Concrete Composites, 85, 122–132.

    Article  Google Scholar 

  • Carino, N. J. (1982). Maturity functions for concrete. In Proceedings of the RILEM International Conference on Concrete at Early Ages, Paris, France (pp. 111–115).

    Google Scholar 

  • Carol, I., & Bažant, Z. P. (1993). Viscoelasticity with aging caused by solidification of nonaging constituent. Journal of Engineering Mechanics, ASCE, 119(11), 2252–2269.

    Article  Google Scholar 

  • Carpinteri, A., Valente, S., Zhou, F. P., Ferrara, G., & Melchiorri, G. (1997). Tensile and flexural creep rupture tests on partially damaged concrete specimens. Materials and Structures/Matériaux et Constructions, 30, 269–276.

    Google Scholar 

  • Constantinides, G., & Ulm, F.-J. (2004). The effect of two types of C-S-H on the elasticity of cement based materials: Results from nanoindentation and micromechanical modeling. Cement and Concrete Research, 34.

    Article  Google Scholar 

  • Craeye, B., de Schutter, G., Humbeeck, H. V., & Cotthem, A. V. (2009). Early age behaviour of concrete supercontainers for radioactive waste disposal. Nuclear Engineering and Design, 239, 23–35.

    Article  Google Scholar 

  • Craeye, B., de Schutter, G., Desmet, B., Vantomme, J., Heirman, G., Vandewalle, L., et al. (2010). Effect of mineral filler type on autogenous shrinkage of self-compacting concrete. Cement and Concrete Research, 40(6), 908–913.

    Article  Google Scholar 

  • Darquennes, A. (2009). Comportement au jeune âge de bétons formulés à base de ciment au laitier de haut-fourneau en condition de déformations libre et restreinte. Thèse de doctorat, Université libre de Bruxelles.

    Google Scholar 

  • Darquennes, A., Staquet, S., Delplancke-Ogletree, M.-P., & Espion, B. (2011). Effect of autogenous deformation on the cracking risk of slag cement concretes. Cement & Concrete Composites, 33, 368–379.

    Article  Google Scholar 

  • de Schutter, G., & Taerwe, L. (1996) Degree of hydration-based description of mechanical properties of early age concrete. Materials and Structures, 29.

    Google Scholar 

  • de Schutter, G., & Vuylsteke, M. (2004). Minimisation of early age thermal cracking in a J-shaped non-reinforced massive concrete quay wall. Engineering Structures, 26, 801–808.

    Article  Google Scholar 

  • Delsaute, B., & Staquet, S. (2014). Early age creep and relaxation modelling of concrete under tension and compression. In L. Kefei, Y. Peiyu & Y. Rongwei (Eds.), CONMOD 2014: Proceedings of the RILEM International Symposium on Concrete Modelling (1 ed.) (Vol. 91, pp. 168–175). France: RILEM Publications S.A.R.L.

    Google Scholar 

  • Delsaute, B., Torrenti, J.-M., & Staquet, S. (2016a). Monitoring and modeling of the early age properties of the vercors concrete. In Technological Innovations in Nuclear Civil Engineering TINCE, September 2016, Paris, France.

    Google Scholar 

  • Delsaute, B., Boulay, C., & Staquet, S. (2016b). Creep testing of concrete since setting by means of permanent and cyclic loadings. Cement and Concrete Research, 73, 75–88.

    Article  Google Scholar 

  • Delsaute, B., Boulay, C., Granja, J., Carette, J., Azenha, M., Dumoulin, C., et al. (2016c). Testing concrete E-modulus at very early ages through several techniques: An inter-laboratory comparison. Strain, 52(2), 91–109.

    Article  Google Scholar 

  • Delsaute, B., Torrenti, J.-M., & Staquet, S. (2017). Modelling basic creep of concrete since setting time. Cement & Concrete Composites, 83, 239–250.

    Article  Google Scholar 

  • Delsaute, B., & Staquet, S. (2017). Decoupling thermal and autogenous strain of concretes with different water/cement ratios during the hardening process. Advances in Civil Engineering Materials, ASTM Journal, 6(2), 1–22.

    Google Scholar 

  • Domone, P. L. (1974). Uniaxial tensile creep and failure of concrete. Magazine of Concrete Research, 26(88), 144–152.

    Article  Google Scholar 

  • EN 12390-13. Testing hardened concrete. Determination of secant modulus of elasticity in compression.

    Google Scholar 

  • Esping, O. (2008). Effect of limestone filler BET(H2O)-area on the fresh and hardened properties of self-compacting concrete. Cement and Concrete Research, 38(7), 938–944.

    Article  Google Scholar 

  • Estrada, C. F., Godoy, L. A., & Prato, T. (2006). Thermo–mechanical behaviour of a thin concrete shell during its early age. Thin-Walled Structures, 44, 483–495.

    Article  Google Scholar 

  • Eurocode 2—Design of Concrete Structures. Part 1-1: General Rules and Rules for Buildings, European Committee for Standardization. EN 1992-1-1—ENV 1992-1-1: 2004.

    Google Scholar 

  • Faria, R., Azenha, M., & Figueiras, J. A. (2006). Modelling of concrete at early ages: Application to an externally restrained slab. Cement & Concrete Composites, 28, 572–585.

    Article  Google Scholar 

  • fib Bulletin 70, CEB-FIP. State-of-the-art report: Code-type models for concrete behaviour. Background of MC2010. 2013.

    Google Scholar 

  • Gawin, D., Wyrzykowski, M., & Pesavento, F. (2008). Modeling hygro-thermal performance and strains of cementitious building materials maturing in variable conditions. J. Build. Phys., 31, 301–318.

    Article  Google Scholar 

  • Gopalakrishnan, K. S. (1968). Creep of concrete under multiaxial compressive stresses. Ph.D. thesis, Civil Engineering, University of Calgary.

    Google Scholar 

  • Granger, L. (1996). Comportement différé du béton dans les enceintes de centrales nucléaires: analyse et modélisation. Ph.D. thesis, Ecole Nationale des Ponts et Chaussées.

    Google Scholar 

  • Gutsch, A., & Rostásy, F. S. (1994). Young concrete under high tensile stresses—Creep, relaxation and cracking. In Proceedings of the International RILEM Conference on Thermal Cracking in Concrete at Early Ages, London, UK (pp. 111–118).

    Google Scholar 

  • Habib, A., Lachemi, M., & Aitcin, P.-C. (2002). Determination of elastic properties of high-performance concrete at early ages. ACI Materials Journal, 99(1), 37–41.

    Google Scholar 

  • Hammer, T. A., Fossa, K. T., & Bjøntegaard, Ø. (2007). Cracking tendency of HSC: Tensile strength and self generated stress in the period of setting and early hardening. Materials and Structures, 40, 319–324.

    Article  Google Scholar 

  • Hannant, D. (1967). Strain behaviour of concrete up to 95 °C under compressive stresses (pp. 57–71.

    Google Scholar 

  • Hilaire, A., Benboudjema, F., Darquennes, A., Berthaud, Y., & Nahas, G. (2014). Modeling basic creep in concrete at early-age under compressive and tensile loading. Nuclear Engineering Design, 269, 222–230.

    Article  Google Scholar 

  • Hilton, H. H., & Yi, S. (1998). The significance of (an) isotropic viscoelastic Poisson ratio stress and time dependencies. International Journal of Solids and Structures, 35, 3081–3095.

    Article  Google Scholar 

  • Holt, E. (2005). Contribution of mixture design to chemical and autogenous shrinkage of concrete at early ages. Cement and Concrete Research, 35, 464–472.

    Article  Google Scholar 

  • Honorio, T., Bary, B., & Benboudjema, F. (2016). Factors affecting the thermo-chemo-mechanical behaviour of massive concrete structures at early-age. Materials and Structures, 49(8), 3055–3073.

    Article  Google Scholar 

  • Hua, C., Acker, P., & Ehrlacher, A. (1995). Analyses and models of the autogenous shrinkage of hardening cement paste: I. Modelling at macroscopic scale. Cement and Concrete Research, 25, 1457–1468.

    Article  Google Scholar 

  • Igarashi, S., & Kawamura, M. (2002). Effects of microstructure on restrained autogenous shrinkage behavior in high strength concretes at early ages. Materials and Structures, 35(2), 80–84.

    Article  Google Scholar 

  • Illston, J. (1965). The creep of concrete under uniaxial tension. Magazine of Concrete Research, 17(51), 77–84.

    Article  Google Scholar 

  • Illston, J. M., & Sanders, P. D. (1973). The effect of temperature change upon the creep of mortar under torsional loading. Magazine of Concrete Research, 25(84), 136–144.

    Article  Google Scholar 

  • Irfan-ul-Hassan, M., Pichler, B., Reihsner, R., & Hellmich, Ch. (2016). Elastic and creep properties of young cement paste, as determined from hourly repeated minute-long quasi-static tests. Cement and Concrete Research, 82, 36–49.

    Article  Google Scholar 

  • ISO 1920-9. Testing of concrete—Part 9: Determination of creep of concrete cylinders in compression.

    Google Scholar 

  • Jensen, O. (2000). Influence of cement composition on autogenous deformation and change of relative humidity. In V. Baroghel-Bouny & P. C. Aïtcin (Eds.), Shrinkage 2000, Proceedings of the International RILEM Workshop, PRO 17, October 16–17, Paris, France (pp. 143–153).

    Google Scholar 

  • Jensen, O. M., & Hansen, P. F. (2001). Autogenous deformation and RH-change in perspective. Cement and Concrete Research, 31, 1859–1865.

    Article  Google Scholar 

  • Jonasson, J.-E. (1994). Modelling of temperature, moisture and stress in young concrete. Ph.D. thesis, Luleå University of Technology, Luleå, Sweden.

    Google Scholar 

  • Jordaan, I. J., & Illston, J. M. (1969). The creep of sealed concrete under multiaxial compressive stresses. Magazine of Concrete Research, 21(69), 195–204.

    Article  Google Scholar 

  • JSCE 2010, JSCE. Guidelines for Concrete. No. 15: Standard Specifications for Concrete Structures. Design (2011).

    Google Scholar 

  • Justnes, H., Sellevold, E. J., Reyniers, B., Van Loo, D., Van Gemert, A., Verboven, F., et al. (1998). The influence of cement characteristics on chemical shrinkage, autogenous shrinkage of concrete. In Proceedings of the International Workshop, June 13–14, Hiroshima, Japan, Edité par Tazawa, E. (pp. 71–80).

    Google Scholar 

  • Kanstad, T., Hammer, T. A., Bjøntegaard, Ø., & Sellevold, E. J. (2003a). Mechanical properties of young concrete. Part I: Experimental results related to test methods and temperature effects. Materials and Structures, 36, 218–225.

    Google Scholar 

  • Kanstad, T., Hammer, T. A., Bjøntegaard, Ø., & Sellevold, E. J. (2003b). Mechanical properties of young concrete. Part II: Determination of model parameters and test program proposals. Materials and Structures, 36, 226–230.

    Google Scholar 

  • Karte, P., Hlobil, M., Reihnsner, R., Dörner, W., Lahayne, O., Eberhardsteiner, J., et al. (2015). Unloading-based stiffness characterization of cement pastes during the second, third and fourth day after production. Strain, 51(2), 156–169.

    Article  Google Scholar 

  • Kee, C. F. (1971). Relation between strength and maturity of concrete. ACI Journal Proceedings, 68(3), 196–203.

    Google Scholar 

  • Kennedy, T. W. (1975). An evolution and summary of a study of the long-term multiaxial creep behavior of concrete. Oak Ridge National Laboratory: Technical report.

    Google Scholar 

  • Kim, J. K., Kwon, S. H., Kim, S. Y., & Kim, Y. Y. (2005). Experimental studies on creep of sealed concrete under multiaxial stresses. Magazine of Concrete Research, 57(10), 623–634.

    Article  Google Scholar 

  • Kim, J.-K., Lee, Y., & Yi, S.-T. (2004). Fracture characteristics of concrete at early ages. Cement and Concrete Research, 34, 507–519.

    Article  Google Scholar 

  • Klemczak, B., & Batog, M. (2014). Przewidywanie wczesnych wytrzymałości betonów na cementach wieloskładnikowych według Eurokodu 2. Inżynieria i Budownictwo, 71(3), 142–145.

    Google Scholar 

  • Klemczak, B., & Knoppik-Wróbel, A. (2014). Analysis of early-age thermal and shrinkage stresses in reinforced concrete walls. ACI Structural Journal, 111(2), 313–322.

    Google Scholar 

  • Klemczak, B., Batog, M., & Pilch, M. (2016). Assessment of concrete strength development models with regard to concretes with low clinker cements. Archives of Civil and Mechanical Engineering, 16(2), 235–247.

    Article  Google Scholar 

  • Kolani, B., Lacarrière, L., Sellier, A., Boutillon, L., & Linger, L. (2011). Crack initiation and propagation at early age. In fib 2011 Symposium, Prague (Czech Republic).

    Google Scholar 

  • Krauss, M., & Hariri, K. (2006). Determination of initial degree of hydration for improvement of early-age properties of concrete using ultrasonic wave propagation. Cement and Concrete Composites, 28, 299–306.

    Article  Google Scholar 

  • Laplante, P. (1993). Propriétés mécaniques des bétons durcissants: analyse comparée des bétons classiques et à très hautes performances. Thèse de Doctorat de l’Ecole Nationale des Ponts et Chaussées, également en Etudes et Recherches des LPC, OA13.

    Google Scholar 

  • Larson, M. (2003). Thermal crack estimation in early age concrete. Models and methods for practical application. Ph.D. thesis, Luleå University of Technology, Luleå, Sweden.

    Google Scholar 

  • Li, H., Wee, T., & Wong, S. (2002). Early-age creep and shrinkage of blended cement concrete. Materials Journal, 99(1), 3–10.

    Google Scholar 

  • Lohtia, R. P. (1970). Mechanism of creep in concrete. Roorkee University Research Journal, 1–2(12), 37–47.

    Google Scholar 

  • Lopes, A. N. M., Fonseca Silva, E., Dal Molin, D. C. C., & Toledo Filho, R. D. (2013). Shrinkage-reducing-admixture: effect on durability of high-strength concrete. ACI Materials Journal, 110(4), 365–374.

    Google Scholar 

  • Loser, R., Münch, B., & Lura, P. (2010). A volumetric technique for measuring the coefficient of thermal expansion of hardening cement paste and mortar. Cement and Concrete Research, 40(7), 1138–1147.

    Article  Google Scholar 

  • Lura, P., Jensen, O. M., & van Breugel, K. (2003). Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms. Cement and Concrete Research, 33, 223–232.

    Article  Google Scholar 

  • Masoero, E., Del Gado, E., Pellenq, R. J. M., Ulm, F. J., & Yip, S. (2012). Nanostructure and nanomechanics of cement: Polydisperse colloidal packing. Physical Review Letters, 109(15), 155503.

    Article  Google Scholar 

  • Masse, M. B. (2010). Étude du comportement déformationnel des bétons de réparation. Mémoire de D.E.A., École polytechnique de Montréal.

    Google Scholar 

  • Mcdonald, J. (1975). Time-dependent deformation of concrete under multiaxial stress conditions. Final report. Technical report.

    Google Scholar 

  • Mehta, P. (1973). Mechanism of expansion associated with ettringite formation. Cement and Concrete Research, 3(1), 1–6.

    Article  Google Scholar 

  • Model Code 1990, CEB-FIP fib. Model Code 1990, 1991.

    Google Scholar 

  • Model Code 2010, CEB-FIP fib. Model Code 2010, 2013.

    Google Scholar 

  • Mounanga, P., Baroghel-Bouny, V., Loukili, A., & Khelidj, A. (2006). Autogenous deformations of cement pastes: Part I. Temperature effects at early age and micro–macro correlations. Cement and Concrete Research, 36, 110–122.

    Article  Google Scholar 

  • Neville, A. M., Dilger, W. H., & Brooks, J. J. (1983). Creep of plain and structural concrete. Longman Group Ltd: Construction Press.

    Google Scholar 

  • Neville, A. M. (2000). Propriétés du béton. Paris: Eyrolles.

    Google Scholar 

  • Parak, K. B., Nogucht, T., & Tomosawa, F. (1998). A study on the hydration ration and autogenous shrinkage of cement paste, Autogenous shrinkage of concrete. In E. Tazawa (Ed.), Proceedings of the International Workshop, June 13–14, Hiroshima, Japan (pp. 281–290).

    Google Scholar 

  • Persson, B. (2000). Consequence of cement constituents, mix composition and curing conditions for self-desiccation in concrete. Materials and Structures, 33, 352–362.

    Article  Google Scholar 

  • Ranaivomanana, N., Multon, S., & Turatsinze, A. (2013). Basic creep of concrete under compression, tension and bending. Construction and Building Materials, 38, 173–180.

    Article  Google Scholar 

  • Reinhardt, H., Blaauwendraad, J., & Jongedijk, J. (1982). Temperature development in concrete structures taking account of state dependent properties. In Proceedings of RILEM International Conference on Concrete at Early Ages, Paris, France (pp. 211–218).

    Google Scholar 

  • Reinhardt, H.-W., & Rinder, T. (2006). Tensile creep of high-strength concrete. Journal of Advanced Concrete Technology, 4(2), 277–283.

    Article  Google Scholar 

  • Reviron, N. (2009). Etude du fluage des bétons en traction. Application aux enceintes de confinement des centrales nucléaires à eau sous pression. Ph.D. thesis, ENS de Cachan.

    Google Scholar 

  • Rifai, F., Darquennes, A., Benboudjema, F., Muzeau, B., & Stefan, L. (2016). Study of shrinkage restraint effects at early-age in alkali activated slag mortars. In FraMCoS-9, Berkeley, USA, May 29–June 1, 2016.

    Google Scholar 

  • Rossi, P., Wu, X., Le Maou, F., & Belloc, (1994). A. Scale effect on concrete in tension. Materials and Structures, 27, 437–444.

    Article  Google Scholar 

  • Rossi, J.-L., Tailhan, F. Le, Maou, L., & Gaillet, E. Martin. (2012). Basic creep behavior of concretes investigation of the physical mechanisms by using acoustic emission. Cement and Concrete Research, 42(1), 61–73.

    Article  Google Scholar 

  • Rossi, P., Tailhan, J., & Le Maou, F. (2013). Creep strain versus residual strain of a concrete loaded under various levels of compressive stress. Cement and Concrete Research, 51, 32–37.

    Article  Google Scholar 

  • Rossi, P., Charron, J., Bastien-Masse, M., Tailhan, J.-L., Le Maou, F., & Ramanich, S. (2014). Tensile basic creep versus compressive basic creep at early ages: comparison between normal strength concrete and a very high strength fibre reinforced concrete. Materials and Structures, 47(10), 1773–1785.

    Article  Google Scholar 

  • Roziere, E., Cortas, R., & Loukili, A. (2015). Tensile behaviour of early age concrete: New methods of investigation. Cement & Concrete Composites, 55, 153–161.

    Article  Google Scholar 

  • Ruetz, W. (1968). An hypothesis for the creep of the hardened cement paste and the influence of simultaneous shrinkage. In Proceedings of the Structure of Concrete and its Behaviour Under Load, Londres (pp. 365–387).

    Google Scholar 

  • Saliba, J., Loukili, A., Grondin, F., & Regoin, J.-P. (2012). Experimental study of creep-damage coupling in concrete by acoustic emission technique. Materials and Structures, 45(9), 1389–1401.

    Article  Google Scholar 

  • Sanahuja, J., Dormieux, L., & Chanvillard, G. (2007). Modelling elasticity of a hydrating cement paste. Cement and Concrete Research, 37.

    Article  Google Scholar 

  • Schindler, A. K. (2004). Effect of temperature on hydration of cementitious materials. ACI Materials Journal, 101(1), 72–81.

    Google Scholar 

  • Sellier, A., Multon, S., Buffo-Lacarrière, L., Vidal, T., Bourbon, X., & Camps, G. (2015). Concrete creep modelling for structural applications: Non-linearity, multi-axiality, hydration, temperature and drying effects. Cement and Concrete Research.

    Google Scholar 

  • Shah, S. P., & Chandra, S. (1970). Fracture of concrete subjected to cyclic and sustained loading. ACI Journal Proceedings, 67.

    Google Scholar 

  • Smadi, M., & Slate, F. O. (1989). Microcracking of high and normal strength concretes under short- and long-term loadings. ACI Materials Journal, 86, 117–127.

    Google Scholar 

  • Sofi, M., Mendis, P. A., & Baweja, D. (2012). Estimation of early-age in situ strength development of concrete slabs. Construction and Building Materials, 29, 659–666.

    Article  Google Scholar 

  • Staquet, S., Delsaute, B., Darquennes, A., & Espion, B. (2012). Design of a revisited TSTM system for testing concrete since setting time under free and restrained conditions. In F. Toutlemonde & J.-M. Torrenti (Eds.), Crack control of mass concrete and related issues concerning early-age of concrete structures (PRO, 85), March 15–16, 2012, Paris, France (pp. 99–110). Paris: RILEM Publications.

    Google Scholar 

  • Stefan, L., Benboudjema, F., Torrenti, J. M., & Bissonnette, B. (2010). Prediction of elastic properties of cement pastes at early ages. Computational Materials Science, 47(3), 775–784.

    Article  Google Scholar 

  • Subcommittee 4: Standardized test methods for creep and shrinkage. Materials and Structures, 31, 507 (1998).

    Google Scholar 

  • Tamtsia, B. T., Beaudoin, J. J., & Marchand, J. (2004). The early age short-term creep of hardening cement paste: Load-induced hydration effects. Cement and Concrete Research, 26, 481–489. https://doi.org/10.1016/S0958-9465(03)00079-9.

    Article  Google Scholar 

  • Taylor, H. F. W. (1990). Cement chemistry. London: Academic Press Limited.

    Google Scholar 

  • Toma, G. (1999). Comportement des bétons au jeune âge. Ph.D. thesis, Université de Laval, Canada (264 pp.).

    Google Scholar 

  • Ulm, F. J., & Coussy, O. (1998). Couplings in early-age concrete: From material modeling to structural design. International Journal of Solids and Structures, 35(31–32), 4295–4311.

    Article  Google Scholar 

  • Van Breugel, K. (1991). Simulation of hydration and formation of structure in hardening cement-based materials, Ph.D. thesis, Delft Technical University, The Netherlands (305 pp.).

    Google Scholar 

  • van Vliet, M. R., & van Mier, J. G. (2000). Experimental investigation of size effect in concrete and sandstone under uniaxial tension. Engineering Fracture Mechanics, 65(2), 165–188.

    Article  Google Scholar 

  • Vandamme, M., & Ulm, F.-J. (2009). Nanogranular origin of concrete creep. Proceedings of the National Academy of Sciences of the United States of America, 106, 10552–10557. https://doi.org/10.1073/pnas.0901033106.

    Article  Google Scholar 

  • Vandamme, M. (2004). A few analogies between the creep of cement and of other materials. Concreep, 10(2015), 78–83.

    Google Scholar 

  • Waller, V., d’Aloïa, L., Cussigh, F., & Lecrux, S. (2004). Using the maturity method in concrete cracking control at early ages. Cement & Concrete Composites, 26, 589–599.

    Article  Google Scholar 

  • Wittmann, F. H. (1982). Creep and shrinkage mechanisms. In Z. P. Bažant & F. H. Wittmann (Eds.), Creep and shrinkage in concrete structures (pp. 129–161). Chichester: Wiley.

    Google Scholar 

  • Wittmann, F. H. (2015). Useful fundamentals of shrinkage and creep of concrete. Concreep, 10(2015), 84–93.

    Google Scholar 

  • Xiang, Y., Zhang, Z., He, S., & Dong, G. (2005). Thermal–mechanical analysis of a newly cast concrete wall of a subway structure. Tunnelling and Underground Space Technology, 20, 442–451.

    Article  Google Scholar 

  • Yssorche-Cubaynes, M.-P., & Olivier, J.-P. (1999). Self-desiccation microcracking and HPC and VHPC durability, Materials and Structures/Matériaux et Constructions, 32, 14–21.

    Article  Google Scholar 

  • Yuan, Y., & Wan, Z. L. (2002). Prediction of cracking within early-age concrete due to thermal, drying and creep behavior. Cement and Concrete Research, 32, 1053–1059.

    Article  Google Scholar 

  • Zhaoxia, L. (1994). Effective creep Poisson’s ratio for damaged concrete. International Journal of Fracture, 66(2), 189–196.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Benboudjema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 RILEM

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benboudjema, F. et al. (2019). Mechanical Properties. In: Fairbairn, E., Azenha, M. (eds) Thermal Cracking of Massive Concrete Structures. RILEM State-of-the-Art Reports, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-76617-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76617-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76616-4

  • Online ISBN: 978-3-319-76617-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics