Skip to main content

Postharvest Biology and Technology of Berries

  • Chapter
  • First Online:
Postharvest Biology and Technology of Temperate Fruits

Abstract

The common term ‘berry fruit’ includes different fruits, such as blueberry, currant, gooseberry, raspberry, and blackberry. These fruits are the richest sources of natural antioxidants. Almost all berries are non-climacteric and are considered highly perishable, being susceptible to mechanical injury during transportation, picking, and storage. The postharvest life of berries is limited to a few days and only a small percentage of these fruits can be consumed fresh. In order to minimize undesirable changes in quality attributes during the postharvest period, a series of techniques to extend the shelf life of perishable fruit can be adopted. Postharvest technology comprises different methods of harvesting, packaging, rapid cooling, storage under refrigeration, as well as modified and controlled atmospheres, and transportation under controlled conditions. This chapter will deal with various aspects of berries, viz., fruit maturation, ripening, postharvest biological factors, and causes of postharvest losses and different postharvest techniques to extend the postharvest shelf life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah, A. Y., & Palta, J. P. (1989). Changes in biophysical and biochemical properties of cranberry (Vaccinium macrocarpon Ait.) fruit during growth and development. In IV International Symposium on Vaccinium Culture (Vol. 241, pp. 360–365).

    Google Scholar 

  • Adams-Phillips, L., Barry, C., & Giovannoni, J. (2004). Signal transduction systems regulating fruit ripening. Trends in Plant Science, 9(7), 331–338.

    Article  CAS  PubMed  Google Scholar 

  • Aghdam, M. S., Pouraghdam, M. B. H., Paliyath, G., & Farmani, B. (2012). The language of calcium in postharvest life of fruits, vegetables and flowers. Scientia Horticulturae, 144, 102–115.

    Article  CAS  Google Scholar 

  • Anttonen, M. J., & Karjalainen, R. O. (2005). Environmental and genetic variation of phenolic compounds in red raspberry. Journal of Food Composition and Analysis, 18(8), 759–769.

    Article  CAS  Google Scholar 

  • Astuti, N. K., Maghfoer, M. D., & Soelistyono, R. (2013). Calcium chloride applications to improve fruit quality on bruised and diseased of pineapple (Ananas comosos (L) Merr). Applied Chemistry, 5, 30–34.

    Google Scholar 

  • Bailey, L. H. (1949). Manual of cultivated plants (pp. 519–526). New York: Macmillan.

    Google Scholar 

  • Beaudry, R. M. (1993). Effect of carbon dioxide partial pressure on blueberry fruit respiration and respiratory quotient. Postharvest Biology and Technology, 3(3), 249–258.

    Article  CAS  Google Scholar 

  • Benvenuti, S., Pellati, F., Melegari, M., & Bertelli, D. (2004). Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. Journal of Food Science, 69, 164–169.

    Article  Google Scholar 

  • Bergman, H. F. (1929). Changes in the rate of respiration of the fruits of the cultivated blueberry during ripening. Science, 70(1801), 15–15.

    Article  CAS  PubMed  Google Scholar 

  • Biale, J. B., & Young, R. E. (1981). Respiration and ripening in fruits. Retrospect and prospect. In J. Friend & M. J. Rhodes (Eds.), Recent advances in the biochemistry of fruits and vegetables (pp. 1–40). New York: Academic.

    Google Scholar 

  • Bialka, K. L., Demirci, A., & Puri, V. M. (2008). Modeling the inactivation of Escherichia coli O157:H7 and Salmonella enterica on raspberries and strawberries resulting from exposure to ozone or pulsed UV-light. Journal of Food Engineering, 85(3), 444–449.

    Article  Google Scholar 

  • Brady, C. J. (1987). Fruit ripening. Annual Review of Plant Physiology, 38(1), 155–178.

    Article  CAS  Google Scholar 

  • Brennan, R. (2005). Current and gooseberries (Ribes L.) In J. Janick (Ed.), The encyclopedia of fruits and nut crops (pp. 191–295). Wallingford: CABI International.

    Google Scholar 

  • Brody, A. L., Zhuang, H., & Han, J. H. (2010). Modified atmosphere packaging for fresh-cut fruits and vegetables. Ames: Wiley-Blackwell.

    Google Scholar 

  • Burden, J. N., & Sexton, R. (1990). The role of ethylene in the shedding of red raspberry fruit. Annals of Botany, 66, 111–120.

    Article  Google Scholar 

  • Burdon, J. N., & Sexton, R. (1990). Fruit abscission and ethylene production of red raspberry cultivars. Scientia Horticulturae, 43(1–2), 95–102.

    Article  CAS  Google Scholar 

  • Burdon, J. N., & Sexton, R. (1993). Ethylene co-ordinates petal abscission in red raspberry (Rubus idaeus L.) flowers. Annals of Botany, 72(4), 289–294.

    Article  CAS  Google Scholar 

  • Burton, C. L., & Schulte-Pason, N. L. (1987). Carbon dioxide as an indicator of fruit impact damage. HortScience, 22(2), 281–282.

    CAS  Google Scholar 

  • Cameron, A. C., Fenton, C. A. L., Yu, Y., Adams, D. O., & Yang, S. F. (1979). Increased production of ethylene by plant tissues treated with 1-aminocyclopropane-1-carboxylic acid [Growth regulators]. HortScience., 14, 178–180.

    CAS  Google Scholar 

  • Cantín, C. M., Minas, I. S., Goulas, V., Jiménez, M., Manganaris, G. A., Michailides, T. J., & Crisosto, C. H. (2012). Sulfur dioxide fumigation alone or in combination with CO 2-enriched atmosphere extends the market life of highbush blueberry fruit. Postharvest Biology and Technology, 67, 84–91.

    Article  CAS  Google Scholar 

  • Castrejón, A. D. R., Eichholz, I., Rohn, S., Kroh, L. W., & Huyskens-Keil, S. (2008). Phenolic profile and antioxidant activity of highbush blueberry (Vaccinium corymbosum L.) during fruit maturation and ripening. Food Chemistry, 109(3), 564–572.

    Article  CAS  Google Scholar 

  • Ceponis, M. J., & Cappellini, R. A. (1983). Control of postharvest decays of blueberries by carbon dioxide-enriched atmospheres. Plant Disease, 67, 169–170.

    Article  Google Scholar 

  • Cha, D. S., & Chinnan, M. (2004). Biopolymer-based antimicrobial packaging: A review. Critical Reviews in Food Science and Nutrition, 44, 223–237.

    Article  CAS  PubMed  Google Scholar 

  • Chandler, F. B. (1952). Preliminary report on the development of cranberry fruit. Cranberries, 17(4), 6–7.

    Google Scholar 

  • Chanjirakul, K., Wang, S. Y., Wang, C. Y., & Siriphanich, J. (2006). Effect of natural volatile compounds on antioxidant capacity and antioxidant enzymes in raspberries. Postharvest Biology and Technology, 40, 106–115.

    Article  CAS  Google Scholar 

  • Chanjirakul, K., Wang, S. Y., Wang, C. Y., & Siriphanich, J. (2007). Natural volatile treatments increase free-radical scavenging capacity of strawberries and blackberries. Journal of the Science of Food and Agriculture, 87, 1463–1472.

    Article  CAS  Google Scholar 

  • Chitarra, M. I. F., & Chitarra, A. B. (2005). Pós-colheita de frutas e hortaliças: fisiologia e manuseio (2nd ed.p. 785). Lavras: UFLA.

    Google Scholar 

  • Cho, E., Seddon, J. M., Rosner, B., Willett, W. C., & Hankinson, S. C. (2004). Prospective study of intake of fruits, vegetables, vitamins, and carotenoids and risk of age-related maculopathy. Archives of Ophthalmology, 122, 883–892.

    Article  PubMed  Google Scholar 

  • Clifford, M. N., & Scalbert, A. (2000). Ellagitannins, occurrence in food, bioavailability and cancer prevention. Journal of the Science of Food and Agriculture, 80, 1118–1125.

    Article  CAS  Google Scholar 

  • Connor, A. M., Luby, J. J., Hancock, J. F., Berkheimer, S., & Hanson, E. J. (2002). Changes in fruit antioxidant activity among blueberry cultivars during cold-temperature storage. Journal of Agricultural and Food Chemistry, 50(4), 893–898.

    Article  CAS  PubMed  Google Scholar 

  • Costa-Guimaraes, I., Menezes, E. G. T., Abreu, P. S. D., Rodrigues, A. C., Borges, P. R. S., Batista, L. R., Marcelo, A. C., & Lima, L. C. D. O. (2013). Physicochemical and microbiological quality of raspberries (Rubus idaeus) treated with different doses of gamma irradiation. Food Science and Technology (Campinas), 33(2), 316–322.

    Article  Google Scholar 

  • Crowe, K. M., Bushway, A. A., Bushway, R. J., Davis-Dentici, K., & Hazen, R. A. (2007). A comparison of single oxidants versus advanced oxidation processes as chlorine-alternatives for wild blueberry processing (Vaccinium angustifolium). International Journal of Food Microbiology, 116(1), 25–31.

    Article  CAS  PubMed  Google Scholar 

  • Dai, J., Patel, J. D., & Mumper, R. J. (2007). Characterization of blackberry extract and its antiproliferative and anti-inflammatory properties. Journal of Medicinal Food, 10(2), 258–265.

    Article  CAS  PubMed  Google Scholar 

  • Donno, D., Cavanna, M., Beccaro, G. L., Mellano, M. G., Torello-Marinoni, D., Cerutti, A. K., & Bounous, G. (2013). Currants and strawberries as bioactive compound sources: Determination of antioxidant profiles with HPLC-DAD/MS. Journal of Applied Botany and Food Quality, 86, 1–10.

    Google Scholar 

  • Fan, L., Forney, C. F., Song, J., Doucette, C., Jordan, M. A., McRae, K. B., & Walker, B. A. (2008). Effect of hot water treatments on quality of highbush blueberries. Journal of Food Science, 70, 292–296.

    Article  CAS  Google Scholar 

  • FAO. (2014). FAOSTAT database collections. Rome: Food and Agriculture Organization of the United Nations. Retrieved from http://faostat.fao.org

  • Forney, C. F. (2009). Postharvest issues in blueberry and cranberry and methods to improve market-life. In IX International Vaccinium Symposium (Vol. 810, pp. 785–798).

    Google Scholar 

  • Forney, C. F., Kalt, W., Jordan, M. A., Vinqvist-Tymchuk, M. R., & Fillmore, S. A. (2012). Blueberry and cranberry fruit composition during development. Journal of Berry Research, 2(3), 169–177.

    CAS  Google Scholar 

  • Galletta, G. J., & Ballington, J. R. (1996). Blueberries, cranberries and lingonberries. In J. Janick & J. N. Moore (Eds.), Fruit breeding, Vol. II: Vine and small fruits crops (pp. 1–107). New York: Wiley.

    Google Scholar 

  • Garcia, J. M., Herrera, S., & Morilla, A. (1996). Effects of postharvest dips in calcium chloride on strawberry. Journal of Agricultural and Food Chemistry, 44(1), 30–33.

    Article  CAS  Google Scholar 

  • Giovannoni, J. (2001). Molecular biology of fruit maturation and ripening. Annual Review of Plant Biology, 52(1), 725–749.

    Article  CAS  Google Scholar 

  • Giovannoni, J. J. (2004). Genetic regulation of fruit development and ripening. The Plant Cell, 16(Suppl 1), S170–S180. Retrieved from http://www.nutrition-and-you.com/.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goulart, B. L., Hammer, P. E., Evensen, K. B., Janisiewicz, W., & Takeda, F. (1992). Pyrrolnitrin, Captan+ Benomyl, and high CO2 enhance raspberry shelf life at 0 or 18C. Journal of the American Society for Horticultural Science, 117(2), 265–270.

    CAS  Google Scholar 

  • Gunes, G., Liu, R. H., & Watkins, C. B. (2002). Controlled-atmosphere effects on postharvest quality and antioxidant activity of cranberry fruits. Journal of Agricultural and Food Chemistry, 50(21), 5932–5938.

    Article  CAS  PubMed  Google Scholar 

  • Hall, I. V., & Forsyth, F. R. (1967). Production of ethylene by flowers following pollination and treatments with water and auxin. Canadian Journal of Botany, 45(7), 1163–1166.

    Article  CAS  Google Scholar 

  • Hanson, E. J., Beggs, J. L., & Beaudry, R. M. (1993). Applying calcium chloride postharvest to improve blueberry firmness. HortScience, 28, 1033–1034.

    CAS  Google Scholar 

  • Hassanpour, H. (2015). Effect of Aloe vera gel coating on antioxidant capacity, antioxidant enzyme activities and decay in raspberry fruit. LWT-Food Science and Technology, 60(1), 495–501.

    Article  CAS  Google Scholar 

  • Hertog, M., Boerrigter, H., van den Boogaard, G., Tijskens, L., & van Schaik, A. (1999). Predicting keeping quality of strawberries (cv. ‘Elsanta’) packed under modified atmospheres: An integrated model approach. Postharvest Biology and Technology, 15, 1–12.

    Article  Google Scholar 

  • Horvitz, S. (2017). Postharvest handling of berries. In Postharvest handling (pp. 107–123). InTech.

    Google Scholar 

  • Joles, D. W., Cameron, A. C., Shirazi, A., Petracek, P. D., & Beaudry, R. M. (1994). Modified-atmosphere packaging of ‘Heritage’ red raspberry fruit: Respiratory response to reduced oxygen, enhanced carbon dioxide, and temperature. Journal of the American Society for Horticultural Science, 119(3), 540–545.

    Google Scholar 

  • Kader, A. A. (2001). A summary of CA requirements and recommendations for fruits other than apples and pears (pp. 737–740). In VIII International Controlled Atmosphere Research Conference 600.

    Google Scholar 

  • Kader, A. A. (2002). Postharvest technology of horticultural crops (Vol. 3311). UCANR Publications.

    Google Scholar 

  • Kahkonen, M. P., Hopia, A. I., & Heinonen, M. (2001). Berry phenolics and their antioxidative activity. Journal of Agricultural and Food Chemistry, 49, 4076–4082.

    Article  CAS  PubMed  Google Scholar 

  • Kalt, W., & McDonald, J. E. (1996). Chemical composition of lowbush blueberry cultivars. Journal of the American Society for Horticultural Science, 121(1), 142–146.

    CAS  Google Scholar 

  • Kalt, W., Forney, C. F., Martin, A., & Prior, R. L. (1999). Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. Journal of Agricultural and Food Chemistry, 47(11), 4638–4644.

    Article  CAS  PubMed  Google Scholar 

  • Kalt, W., Lawand, C., Ryan, D. A., McDonald, J. E., Donner, H., & Forney, C. F. (2003). Oxygen radical absorbing capacity, anthocyanin and phenolic content of highbush blueberries (Vaccinium corymbosum L.) during ripening and storage. Journal of the American Society for Horticultural Science, 128(6), 917–923.

    CAS  Google Scholar 

  • Kalt, W., Howell, A. B., MacKinnon, S. L., & Goldman, I. L. (2007). Selected bioactivities of Vaccinium berries and other fruit crops in relation to their phenolic contents. Journal of the Science of Food and Agriculture, 87, 2279–2285.

    Article  CAS  Google Scholar 

  • Kim, G., & Wills, R. (1998). Interaction of enhanced carbon dioxide and reduced ethylene on the storage life of strawberries. Journal of Horticultural Science and Biotechnology, 73, 181–184.

    Article  CAS  Google Scholar 

  • Kiple, K. F., Ornelas, K. C., & Blake, A. (2000). Book reviews—The Cambridge World History of Food. Nature, 408(6815), 908–908.

    Article  Google Scholar 

  • Kowalenko, C. G. (2005). Accumulation and distribution of micronutrients in Willamette red raspberry plants. Canadian Journal of Plant Science, 85, 179–191.

    Article  CAS  Google Scholar 

  • Krüger, E., Schöpplein, E., Rasim, S., Cocca, G., & Fischer, H. (2003). Effects of ripening stage and storage time on quality parameters of red raspberry fruit. European Journal of Horticultural Science, 68(4), 176–182.

    Google Scholar 

  • Lee, S. K., & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207–220.

    Article  CAS  Google Scholar 

  • Leja, M., Mareczek, A., & Ben, J. (2003). Antioxidant properties of two apple cultivars during long-term storage. Food Chemistry, 80(3), 303–307.

    Article  CAS  Google Scholar 

  • Lurie, S. (2009). Stress physiology and latent damage. In W. J. Florkowski, R. L. Shewfelt, B. Brueckner, & S. E. Prussia (Eds.), Postharvest handling: A systems approach (pp. 443–459). San Diego: Academic.

    Chapter  Google Scholar 

  • Manganaris, G. A., Goulas, V., Vicente, A. R., & Terry, L. A. (2014). Berry antioxidants: Small fruits providing large benefits. Journal of the Science of Food and Agriculture, 94(5), 825–833. https://doi.org/10.1002/jsfa.6432.

    Article  PubMed  CAS  Google Scholar 

  • Mertz, C., Gancel, A. L., Gunata, Z., Alter, P., Dhuique-Mayer, C., Vaillant, F., Perez, A. M., & Brat, P. (2009). Phenolic compounds, carotenoids and antioxidant activity of three tropical fruits. Journal of Food Composition and Analysis, 22(5), 381–387.

    Article  CAS  Google Scholar 

  • Mitcham, E. J., Clayton, M., & Biasi, W. V. (1998). Comparison of devices for measuring cherry fruit firmness. HortScience, 33(4), 723–727.

    Google Scholar 

  • Monselise, S. P. (1986). CRC handbook of fruit set and development (No. 634.02 C7).

    Google Scholar 

  • Mullen, W., McGinn, J., Lean, M. E. J., MacLean, M. R., Gardner, P., Duthie, G. G., Yokota, T., & Crozier, A. (2002). Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. Journal of Agricultural and Food Chemistry, 50, 5191–5196.

    Article  CAS  PubMed  Google Scholar 

  • Nile, S. H., & Park, S. W. (2014). Edible berries: Bioactive components and their effect on human health. Nutrition, 30, 134–144.

    Article  CAS  PubMed  Google Scholar 

  • Pelayo, C., Ebeler, S. E., & Kader, A. A. (2003). Postharvest life and flavor quality of three strawberry cultivars kept at 50C in air or air+ 20 kPa CO2. Postharvest Biology and Technology, 27(2), 171–183.

    Article  Google Scholar 

  • Perkins-Veazie, P., & Kalt, W. (2002). Postharvest storage of blackberry fruit does not increase antioxidant levels. Acta Horticulturae, 585, 521–524.

    Article  CAS  Google Scholar 

  • Perkins-Veazie, P., & Nonnecke, G. (1992). Physiological changes during ripening of raspberry fruit. HortScience, 27(4), 331–333.

    CAS  Google Scholar 

  • Perkins-Veazie, P., Clark, J. R., Collins, J. K., & Magee, J. (1995). Southern highbush blueberry clones differ in postharvest fruit quality. Fruit Varieties Journal, 49(1), 46–52.

    Google Scholar 

  • Perkins-Veazie, P., Collins, J. K., & Clark, J. R. (1996). Cultivar and maturity affect postharvest quality of fruit from erect blackberries. HortScience, 31(2), 258–261.

    Google Scholar 

  • Perkins-Veazie, P., Collins, J. K., & Howard, L. (2008). Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest Biology and Technology, 47(3), 280–285.

    Article  CAS  Google Scholar 

  • Petersen, K., Nielsen, P. V., Lawther, M., Olsen, M. B., Nilsson, N. H., & Mortensen, G. (1999). Potential of biobased materials for food packaging. Trends in Food Science and Technology, 10, 52–68.

    Article  CAS  Google Scholar 

  • Prior, R. L., Cao, G., Martin, A., Sofic, E., McEwen, J., O’Brien, C., Lischner, N., Ehlenfeldt, M., Kalt, W., Krewer, G., & Mainland, C. M. (1998). Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. Journal of Agricultural and Food Chemistry, 46, 2686–2693.

    Article  CAS  Google Scholar 

  • Reynoso, R. O., & De Michelis, A. (1994). Parameters affecting freezing, storage and transport of individually frozen Schöeneman raspberries. International Journal of Refrigeration, 17(3), 209–213.

    Article  Google Scholar 

  • Rigby, B., & Dana, M. N. (1971). Seed number and berry volume in cranberry. HortScience, 6, 495–496.

    Google Scholar 

  • Rimando, A. M., Nagmani, R., Feller, D. R., & Yokoyama, W. (2005). Pterostilbene, a new agonist for the peroxisome proliferator-activated receptor a-isoform, lowers plasma lipoproteins and cholesterol in hypercholesterolemic hamsters. Journal of Agricultural and Food Chemistry, 53, 3403–3407.

    Article  CAS  PubMed  Google Scholar 

  • Rivera, S. A., Zoffoli, J. P., & Latorre, B. A. (2013). Determination of optimal sulfur dioxide time and concentration product for postharvest control of gray mold of blueberry fruit. Postharvest Biology and Technology, 83, 40–46.

    Article  CAS  Google Scholar 

  • Robbins, J., Moore, P. P., & Patterson, M. (1989a). Fruit respiration rates and firmness of red raspberry and related Rubus genotypes. Acta Horticulturae, 262, 311–317.

    Article  Google Scholar 

  • Robbins, J., Sjulin, T. M., & Patterson, M. (1989b). Postharvest storage characteristics and respiration rates in five cultivars of red raspberry. HortScience, 24, 980–982.

    CAS  Google Scholar 

  • Rommel, A., & Wrolstad, R. E. (1993). Ellagic acid content of red raspberry juice as influenced by cultivar, processing, and environmental factors. Journal of Agricultural and Food Chemistry, 41(11), 1951–1960.

    Article  CAS  Google Scholar 

  • Samtani, J., & Kushad, M. M. (2015). A longer marketing life for blackberry and raspberry fruit (pp. 423–701). Virginia Cooperative Extension, Virginia State University, publication.

    Google Scholar 

  • Sandhya. (2010). Modified atmosphere packaging of fresh produce: Current status and future needs. LWT-Food Science and Technology, 43(3), 381–392.

    Article  CAS  Google Scholar 

  • Sluis, A. A., Dekker, M., Jongen, W. M., & deJager, A. (2001). Polyphenolic antioxidants in apples. Effect of storage conditions on four cultivars (Vol. 600, pp. 533–540). In VIII International Controlled Atmosphere Research Conference.

    Google Scholar 

  • Smith, R. B. (1992). Controlled atmosphere storage of ‘Redcoat’ strawberry fruit. Journal of the American Society for Horticultural Science, 117, 260–264.

    Google Scholar 

  • Smith, B. J., Magee, J. B., & Gupton, C. L. (1996). Susceptibility of rabbiteye blueberry cultivars to postharvest diseases. Plant Disease, 80(2), 215–218.

    Article  Google Scholar 

  • Smittle, D. A., & Miller, W. R. (1988). Rabbiteye blueberry storage life and fruit quality in controlled atmospheres and air storage. Journal of the American Society for Horticultural Science, 113, 723–728.

    Google Scholar 

  • Sommer, N. F. (1985). Role of controlled environments in suppression of postharvest diseases. Canadian Journal of Plant Pathology, 7(3), 331–339.

    Article  Google Scholar 

  • Sturm, K., Koron, D., & Stampar, F. (2003). The composition of fruit of different strawberry varieties depending on maturity stage. Food Chemistry, 83(3), 417–422.

    Article  CAS  Google Scholar 

  • Tamada, T. (2004). Blueberry production in Japan—today and in the future. In VIII International Symposium on Vaccinium Culture (Vol. 715, pp. 267–272).

    Google Scholar 

  • Turmanidze, T., Gulua, L., Jgenti, M., & Wicker, L. (2016). Effect of calcium chloride treatments on quality characteristics of blackberry, raspberry and strawberry fruits after cold storage. Turkish Journal of Agriculture-Food Science and Technology, 4(12), 1127–1133.

    Article  Google Scholar 

  • Vicente, A. R., Manganaris, G. A., Sozzi, G. O., & Crisosto, C. H. (2009). Nutritional quality of fruits and vegetables. In W. J. Florkowski, R. L. Shewfelt, B. Brueckner, & S. E. Prussia (Eds.), Postharvest handling: A systems approach (pp. 57–106). San Diego: Academic.

    Chapter  Google Scholar 

  • Vvedenskaya, I. O., & Vorsa, N. (2004). Flavonoid composition over fruit development and maturation in American cranberry, Vaccinium macrocarpon Ait. Plant Science, 167(5), 1043–1054.

    Article  CAS  Google Scholar 

  • Walsh, C. S., Popenoe, J., & Solomos, T. (1983). Thornless blackberry is a climacteric fruit. HortScience, 18(4), 482–483.

    Google Scholar 

  • Westwood, M. N. (1993). Temperate-zone. Pomology, physiology and culture. Portland: Timber Press.

    Google Scholar 

  • Wills, R. B. H. (1998). Enhancement of senescence in non-climacteric fruit and vegetables by low ethylene levels. Acta Horticulturae, 464, 159–162.

    Article  Google Scholar 

  • Yahia, E. M., & Ornelas-Paz, J. D. J. (2010). Chemistry, stability and biological actions of carotenoids. Fruit and vegetable phytochemicals (pp. 177–222).

    Google Scholar 

  • Zhao, Y. (Ed.). (2007). Berry fruit: Value-added products for health promotion. Boca Raton: CRC Press.

    Google Scholar 

  • Zheng, W., & Wang, S. Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry, 49(11), 5165–5170.

    Article  CAS  PubMed  Google Scholar 

  • Zoffoli, J. P., & Latorre, B. A. (2011). Table grape (Vitis vinifera L.) In E. M. Yahia (Ed.), Postharvest biology and technology of tropical and subtropical fruits. V. 3, Cocona to mango (pp. 179–212). Cambridge: Woodhead Publishing Limited.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Baghel, M., Yadav, A., Dhakar, M.K. (2018). Postharvest Biology and Technology of Berries. In: Mir, S., Shah, M., Mir, M. (eds) Postharvest Biology and Technology of Temperate Fruits. Springer, Cham. https://doi.org/10.1007/978-3-319-76843-4_15

Download citation

Publish with us

Policies and ethics