Skip to main content

Feature Selection in High-Dimensional Dataset Using MapReduce

  • Conference paper
  • First Online:
Artificial Intelligence (BNAIC 2017)

Abstract

This paper describes a distributed MapReduce implementation of the minimum Redundancy Maximum Relevance algorithm, a popular feature selection method in bioinformatics and network inference problems. The proposed approach handles both tall/narrow and wide/short datasets. We further provide an open source implementation based on Hadoop/Spark, and illustrate its scalability on datasets involving millions of observations or features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Recent advances and emerging challenges of feature selection in the context of big data. Knowl. Based Syst. 86, 33–45 (2015)

    Article  Google Scholar 

  2. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  3. Yeung, J.H., Tsang, C., Tsoi, K.H., Kwan, B.S., Cheung, C.C., Chan, A.P., Leong, P.H.: Map-reduce as a programming model for custom computing machines. In: 16th International Symposium on Field-Programmable Custom Computing Machines (FCCM 2008), pp. 149–159. IEEE (2008)

    Google Scholar 

  4. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P., Murthy, R.: Hive: a warehousing solution over a map-reduce framework. Proc. VLDB Endow. 2(2), 1626–1629 (2009)

    Article  Google Scholar 

  5. Chu, C., Kim, S.K., Lin, Y.A., Yu, Y., Bradski, G., Ng, A.Y., Olukotun, K.: Map-reduce for machine learning on multicore. Adv. Neural Inf. Process. Syst. 19, 281 (2007)

    Google Scholar 

  6. Apache Mahout: Scalable machine learning and data mining. https://mahout.apache.org/

  7. Meng, X., Bradley, J., Yuvaz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman, J., Tsai, D., Amde, M., Owen, S., et al.: MLlib: machine learning in apache spark. JMLR 17(34), 1–7 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  9. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)

    Article  MATH  Google Scholar 

  10. López, F.G., Torres, M.G., Batista, B.M., Pérez, J.A.M., Moreno-Vega, J.M.: Solving feature subset selection problem by a parallel scatter search. Eur. J. Oper. Res. 169(2), 477–489 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Melab, N., Cahon, S., Talbi, E.G.: Grid computing for parallel bioinspired algorithms. J. Parallel Distrib. Comput. 66(8), 1052–1061 (2006)

    Article  MATH  Google Scholar 

  12. de Souza, J.T., Matwin, S., Japkowicz, N.: Parallelizing feature selection. Algorithmica 45(3), 433–456 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garcia, D.J., Hall, L.O., Goldgof, D.B., Kramer, K.: A parallel feature selection algorithm from random subsets. In: Proceedings of the 17th European Conference on Machine Learning and the 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, Berlin (2006)

    Google Scholar 

  14. Guillén, A., Sorjamaa, A., Miche, Y., Lendasse, A., Rojas, I.: Efficient parallel feature selection for steganography problems. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 1224–1231. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02478-8_153

    Chapter  Google Scholar 

  15. Singh, S., Kubica, J., Larsen, S., Sorokina, D.: Parallel large scale feature selection for logistic regression. In: SDM, pp. 1172–1183. SIAM (2009)

    Google Scholar 

  16. Peralta, D., Río, S., Ramírez, S., Triguero, I., Benítez, J.M., Herrera, F.: Evolutionary feature selection for big data classification: a MapReduce approach. In: Mathematical Problems in Engineering (2015)

    Google Scholar 

  17. Zhao, Z., Zhang, R., Cox, J., Duling, D., Sarle, W.: Massively parallel feature selection: an approach based on variance preservation. Mach. Learn. 92(1), 195–220 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sun, Z.: Parallel feature selection based on MapReduce. In: Wong, W.E., Zhu, T. (eds.) Computer Engineering and Networking. LNEE, vol. 277, pp. 299–306. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-01766-2_35

    Chapter  Google Scholar 

  19. Ordozgoiti, B., Gómez Canaval, S., Mozo, A.: Massively parallel unsupervised feature selection on spark. In: Morzy, T., Valduriez, P., Bellatreche, L. (eds.) ADBIS 2015. CCIS, vol. 539, pp. 186–196. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23201-0_21

    Chapter  Google Scholar 

  20. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Distributed feature selection: an application to microarray data classification. Appl. Soft Comput. J. 30, 136–150 (2015)

    Article  Google Scholar 

  21. Ramírez-Gallego, S., Mouriño-Talín, H., Martínez-Rego, D., Bolón-Canedo, V., Benítez, J.M., Alonso-Betanzos, A., Herrera, F.: An information theory-based feature selection framework for big data under apache spark. IEEE Trans. Syst. Man Cybern. Syst. PP(99), 1–13 (2017)

    Article  Google Scholar 

  22. Brown, G., Pocock, A., Ming-Jie, Z., Luján, M.: Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J. Mach. Learn. Res. 13, 27–66 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  24. Meyer, P.E., Lafitte, F., Bontempi, G.: minet: a R/bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinform. 9, 461 (2008)

    Article  Google Scholar 

  25. Reggiani, C., Le Borgne, Y.A., Bontempi, G.: Feature selection in high-dimensional dataset using MapReduce. ArXiv e-prints, September 2017

    Google Scholar 

  26. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A comparison of join algorithms for log processing in MapReduce. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data (SIGMOD 2010), New York, pp. 975–986. ACM (2010)

    Google Scholar 

  27. Sarma, A.D., Afrati, F.N., Salihoglu, S., Ullman, J.D.: Upper and lower bounds on the cost of a map-reduce computation. In: Proceedings of the VLDB Endowment, vol. 6, pp. 277–288. VLDB Endowment (2013)

    Google Scholar 

  28. Ahn, J., Jeon, Y.: Sparse HDLSS discrimination with constrained data piling. Comput. Stat. Data Anal. 90, 74–83 (2015)

    Article  MathSciNet  Google Scholar 

  29. Jay, N.D., Papillon-Cavanagh, S., Olsen, C., Hachem, N., Bontempi, G., Haibe-Kains, B.: mRMRe: an R package for parallelized mRMR ensemble feature selection. Bioinformatics 29(18), 2365–2368 (2013)

    Article  Google Scholar 

  30. Karau, H., Konwinski, A., Wendell, P., Zaharia, M.: Learning Spark: Lightning-Fast Big Data Analytics, 1st edn. O’Reilly Media Inc., Sebastopol (2015)

    Google Scholar 

  31. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation (NSDI 2012), Berkeley, p. 2. USENIX Association (2012)

    Google Scholar 

  32. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Feature Selection for High-Dimensional Data. AIFTA. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21858-8

    Book  Google Scholar 

Download references

Acknowledgement

The author CR acknowledges the funding of the BridgeIris project (RBC/13-PFS EH-11) supported by INNOVIRIS (Brussels Institute for the encouragement of scientific research and innovation) and The Belgian Kids’ Fund. The authors YLB and GB acknowledge the funding of the Brufence project (Scalable machine learning for automating defense system) supported by INNOVIRIS (Brussels Institute for the encouragement of scientific research and innovation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Reggiani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reggiani, C., Le Borgne, YA., Bontempi, G. (2018). Feature Selection in High-Dimensional Dataset Using MapReduce. In: Verheij, B., Wiering, M. (eds) Artificial Intelligence. BNAIC 2017. Communications in Computer and Information Science, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-319-76892-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76892-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76891-5

  • Online ISBN: 978-3-319-76892-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics