Skip to main content

Phase Field Topology Constraints

  • Chapter
  • First Online:
Research in Shape Analysis

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 12))

Abstract

This paper presents a morphological approach to extract topologically critical regions in phase field models. There are a few studies regarding topological properties of phase fields. One line of work related to our problem addresses constrained phase field evolution. This approach is based on modifying the optimization problem to limit connectedness of the interface. However, this approach results in a complex optimization problem, and it provides nonlocal control. We adapted a non-simple point concept from digital topology to local regions using structuring masks. These regions can be used to constrain the evolution locally. Besides this approach is flexible as it allows the design of structuring elements. Such a study to define topological structures specific to phase field dynamics has not been done to our knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexandrov, O., Santosa, F.: A topology-preserving level set method for shape optimization. J. Comput. Phys. 204(1), 121–130 (2005)

    Article  MathSciNet  Google Scholar 

  2. Bertrand, G., Couprie, M.: On parallel thinning algorithms: minimal non-simple sets, p-simple points and critical kernels. J. Math. Imaging Vis. 35(1), 23–35 (2009)

    Article  MathSciNet  Google Scholar 

  3. Dondl, P.W., Lemenant, A., Wojtowytsch, S.: Phase field models for thin elastic structures with topological constraint. Arch. Ration. Mech. Anal. 223(2), 693–736 (2015)

    Article  MathSciNet  Google Scholar 

  4. Du, Q., Liu, C., Wang, X.: Retrieving topological information for phase field models. SIAM J. Appl. Math. 65(6), 1913–1932 (2005)

    Article  MathSciNet  Google Scholar 

  5. Eckhardt, U., Latecki, L.: Digital Topology. In Current Topics in Pattern Recognition Research, Research Trends, Council of Scientific Information, Vilayil Gardens, Trivandrum (1995)

    Google Scholar 

  6. Faisan, S., Passat, N., Noblet, V., Chabrier, R., Meyer, C.: Topology preserving warping of 3-d binary images according to continuous one-to-one mappings. IEEE Trans. Image Process. 20(8), 2135–2145 (2011)

    Article  MathSciNet  Google Scholar 

  7. Gunther, D.: Topological analysis of discrete scalar data. Ph.D. thesis, Max-Planck-Institut Informatik (2012)

    Google Scholar 

  8. Han, X., Xu, C., Prince, J.: A topology preserving level set method for geometric deformable models. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 755–768 (2003)

    Google Scholar 

  9. Khalimsky, E.: Topological structures in computer science. J. Appl. Math. Simul. 1(1), 25–40 (1987)

    Article  MathSciNet  Google Scholar 

  10. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    Chapter  Google Scholar 

  11. Kong, T., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48(3), 357–393 (1989)

    Article  Google Scholar 

  12. Le Guyader, C., Vese, L.A.: Self-repelling snakes for topology-preserving segmentation models. IEEE Trans. Image Process. 17(5), 767–779 (2008)

    Google Scholar 

  13. Malgouyres, R.: Presentation of the fundamental group in digital surfaces. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) Discrete Geometry for Computer Imagery. DGCI 1999. Lecture Notes in Computer Science, vol. 1568, pp. 136–150. Springer, Berlin (1999)

    Chapter  Google Scholar 

  14. Melin, E.: Connectedness and continuity in digital spaces with the Khalimsky topology (2003)

    Google Scholar 

  15. Ngo, P., Passat, N., Kenmochi, Y., Talbot, H.: Topology-preserving rigid transformation of 2D digital images. IEEE Trans. Image Process. 23(2), 885–897 (2014)

    Article  MathSciNet  Google Scholar 

  16. Passat, N., Mazo, L.: An introduction to simple sets. Pattern Recogn. Lett. 30(15), 1366–1377 (2009)

    Article  Google Scholar 

  17. Ronse, C.: Minimal test patterns for connectivity preservation in parallel thinning algorithms for binary digital images. Discret. Appl. Math. 21(1), 67–79 (1988)

    Article  MathSciNet  Google Scholar 

  18. Wojtowytsch, S.: Phase-field models for thin elastic structures: Willmore’s energy and topological constraints. Ph.D. thesis, Durham University (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüyam Acar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s) and the Association for Women in Mathematics

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Acar, R., Sağırlı, N. (2018). Phase Field Topology Constraints. In: Genctav, A., et al. Research in Shape Analysis. Association for Women in Mathematics Series, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-77066-6_5

Download citation

Publish with us

Policies and ethics