Skip to main content

Metamaterials

  • Chapter
  • First Online:
Nanophotonics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 213))

  • 1792 Accesses

Abstract

Metamaterials are engineered materials that are designed to manipulate light in ways that are not possible with materials taken directly from nature [1,2,3,4,5,6]. In their designs metamaterial have a synthetic structure introduced into them at subwavelength scales. As a result, for the wavelengths they manipulate, the metamaterials appear to be homogeneous media. A homogeneous medium , however, with previously unseen optical properties. In the development of this new class of optical materials, metamaterials have been studied in the frequency regions between the terahertz and optical regions. The essential limitation on the wavelengths of their applications being the ability to design and implement an appropriate subwavelength pattern of synthetic features which provides the source of the metamaterial response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.R. McGurn, Nonlinear Optics of Photonic Crystals and Meta-Materials (Claypool & Morgan, San Rafael, 2015)

    Book  Google Scholar 

  2. W. Cai, V. Shalaev, Optical Metamaterials: Fundamental and Applications (Springer, New York, 2010)

    Book  Google Scholar 

  3. N. Engheta, R.W. Ziolkowski (eds.), Metamaterials: Physics and Engineering Explorations (IEEE Press, Wiley-Interscience, Wiley, Canada, 2006)

    Google Scholar 

  4. S.A. Ramakrishna, Physics of negative index materials. Rep. Prog. Phys. 68, 449 (2005)

    Article  ADS  Google Scholar 

  5. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509 (1968)

    Article  ADS  Google Scholar 

  6. P. Giri, K. Choudhary, A. Sen Gupta, A.K. Bandyopadhyay, A.R. McGurn, Klein-Gordon equation approach to nonlinear split-ring resonator based metamaterials: one-dimensional systems. Phys. Rev. B 84, 155429 (2011)

    Article  ADS  Google Scholar 

  7. M. Eleftheriou, N. Lazarides, G.P. Tsironis, Magnetoinductive breathers in metamaterials. Phys. Rev. E 77, 036608 (2008)

    Article  ADS  Google Scholar 

  8. G.V. Eleftheriades, EM transmission-line metamaterials. Mater. Today 12, 30 (2009)

    Article  Google Scholar 

  9. I. Kourakis, N. Lazarides, G.P. Tsironis, Self-focusing and envelope pulse generation in nonlinear magnetic metamaterials. Phys. Rev. E 75, 067601 (2007)

    Article  ADS  Google Scholar 

  10. M. Lapine, M. Gorkunov, K.H. Ringhofer, Nonlinearity of a metamaterial arising from diode inserts into resonant conductive elements. Phys. Rev. E 67, 065601 (2003)

    Article  ADS  Google Scholar 

  11. I.V. Shadrivov, S.K. Morrison, Y. Kivshar, Tunable split-ring resonators for nonlinear negative-index metamaterials. Opt. Express 14, 9344 (2006)

    Article  ADS  Google Scholar 

  12. M.P. Marder, Condensed Matter Physics, 2nd edn. (Wiley, Hoboken, 2010)

    Book  Google Scholar 

  13. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  14. V.M. Agranovich, Y.N. Gartstein, Spatial dispersion and negative refraction of light. Phys. Usp. 49, 1029 (2006)

    Article  ADS  Google Scholar 

  15. V.M. Agranovich, Hybrid organic-inorganic nanostructures and light-matter interaction, in Problems of Condensed Matter Physics, ed. by A.L. Ivanov, S.G. Tikhodeev (Clarendon Press, Oxford, 2006) (Chapter 2)

    Google Scholar 

  16. I.V. Shadrivov, A.A. Zharov, Y.S. Kivshar, Second harmonic generation in nonlinear left-handed metamaterials. J. Opt. Soc. Am. B 23, 529 (2006)

    Article  ADS  Google Scholar 

  17. Y. Dong, T. Itoh, Metamaterial-based antennas. Proc. IEEE 100, 2271 (2012)

    Article  Google Scholar 

  18. J. Wang, W. Zhou, E.-P. Li, Enhancing the light transmission of plasmonic metamaterials through polygonal aperture arrays. Opt. Express 17, 20349 (2009)

    Article  ADS  Google Scholar 

  19. A.V. Kildishev, V.M. Shalaev, Transformation optics and metamaterials. Phys. Usp. 54, 53 (2011)

    Article  ADS  Google Scholar 

  20. U. Leonhardt, T.G. Philibin, General relativity in electrical engineering. New J. Phys. 8, 247 (2006)

    Article  ADS  Google Scholar 

  21. U. Leonhardt, T.G. Philibin, Transformation optics and the geometry of light. Prog. Opt. 52, 69 (2009)

    Article  Google Scholar 

  22. J. Van Bladel, Relativity and Engineering (Springer, Berlin, 1984)

    Book  Google Scholar 

  23. V.P. Drachev, V.A. Pololsky, A.V. Kildishev, Hyperbolic metamaterials: new physics behind a classical problem. Opt. Express 21, 15048–15064 (2013)

    Article  ADS  Google Scholar 

  24. A. Poddubny, I. Iorh, P. Belov, Y. Kivshar, Hyperbolic metamaterials. Nat. Photonics 7, 959–967 (2013)

    Article  Google Scholar 

  25. P. Shekhar, J. Atkinson, Z. Jacob, Hyperbolic metamaterials: fundamentals and applications. Nano Conver. (2014). https://doi.org/10.1186/s40580-014-0014-6

    Article  Google Scholar 

  26. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075 (1999)

    Article  ADS  Google Scholar 

  27. S. Hrabar, J. Bartolic, Capacitively loaded loop as basic element of negative permeability metamaterial, in Proceeding of European Microwave Conference, vol. 2, (Milan, 2002), p. 357

    Google Scholar 

  28. S. Hrabar, J. Bartolic, Simplified analysis of split ring resoanator used in backward meta-materials, in Proceedings of International Conference on Mathematical Methods in Electromagnetic Theory, vol. 2 (Kiev, 2002), p. 500

    Google Scholar 

  29. E. Shamonina, V.A. Kalinin, K.H. Ringhofer, L. Solymar, Magnetoinductuve waves in one, two, and three dimensions. J. Appl. Phys. 92, 6252 (2002)

    Article  ADS  Google Scholar 

  30. I.V. Shadrivov, A.N. Reznik, Y.S. Kivshar, Magnetoinductive waves in arrays of split-ring resonators. Phys. B 394, 180 (2007)

    Article  ADS  Google Scholar 

  31. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, A composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000)

    Article  ADS  Google Scholar 

  32. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschierich, F. Schmidt, J.F. Zhou, Th Koschny, C.M. Soukoulis, Magnetic metamaterials at telecommunication and visible frequencies. Phys. Rev. Lett. 95, 203901 (2005)

    Article  ADS  Google Scholar 

  33. B.D. Braaten, R.P. Scheeler, M. Reich, R.M. Nelson, C. Bauer-Reich, J. Glower, G.J. Owen, Compact metamaterial-based UHF RFID antennas: deformed omega and split-ring resonator structures. ACES J. 25, 530 (2010)

    Google Scholar 

  34. T.J. Yen, Y.-C. Lai, A plasmonic biosensor demonstarates high sensitivity and long-distance detection. SPIE News. (2011). https://doi.org/10.1117/2.1201107.003782

    Article  Google Scholar 

  35. J.D. Baena, J. Bonache, F. Martin, R.M. Sillero, T. Lopetegi, M.A.G. Laso, I. Gil, M.F. Portillo, M. Sorolla, Equivalent-circuit models for split-ring resonator and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans. Microw. Theory Tech. 53, 1451 (2005)

    Article  ADS  Google Scholar 

  36. H.S. Chen, L.X. Ran, J.T. Huangfu, X.M. Zhang, K.S. Chen, T.M. Grzegorczyk, J.A. Kong, Magnetic properties of S-shaped split-ring resonantors. Progr. Electromang. Res. PIER 51, 231 (2005)

    Article  Google Scholar 

  37. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  38. D. Schurig, J.J. Mock, B.J. Justice, B.J. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)

    Article  ADS  Google Scholar 

  39. M. Anand, Applications of metamaterials in antenna engineering. Int. J. Tech. Res. Appl. 2, 49–52 (2014)

    Google Scholar 

  40. R.W. Ziolkowski, A.D. Kipple, Application of double negative materials to increase the power radiated by electrically small antennas. IEEE Trans. Antennas Propag. 51, 2626–2640 (2003)

    Article  ADS  Google Scholar 

  41. M.A. Henari, Compact meta-material antenna with a-shaped topology for ultra wide band microwave communications. SOP Trans. Wirel. Commun. 1, 32–39 (2014)

    Article  Google Scholar 

  42. W.X. Tang, Z.L. Mei, T.-J. Cui, Sci. China: Phys. Mech. Astron. 58(12), 127001 (2015). K.V. Ajetrao, A.P. Dhande, Review on metamaterial and its application as antenna. Adv. Eng. Technol. 95–100 (2015)

    Google Scholar 

  43. S. Yan, Metamaterial design and its applications for antennas. Ph.D. thesis in Electrical Engineering, KU Leuven, Science, Engineering & Technology (2015)

    Google Scholar 

  44. V. Ginis, J. Danckaert, I. Veretennicoff, P. Tassin, Transforming Cherenkov radiation in metamaterials. Proc. SPIE 9546, 9546Q-1 (2015)

    Google Scholar 

  45. J.-K. So, J.-J. Won, M.A. Sattorov, S.-H. Bak, K.-H. Jang, G.-S. Park, D.S. Kin, F.J. Garcia-Vidal, Cerenkov radiation in metallic metamaterials. Appl. Phys. Lett. 97, 151107 (2010)

    Article  ADS  Google Scholar 

  46. H. Chen, M. Chen, Flipping photons backward: reversed Cherenkov radiation. Mater. Today 14, 34–41 (2011)

    Article  Google Scholar 

  47. C. Luo, S.G. Johnson, J.D. Joannopoulos, All-angle negative refraction without negative effective index. Phys. Rev. B 65, 201104 (2002)

    Article  ADS  Google Scholar 

  48. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Electromagnetic waves: negative refraction by photonic crystals. Nature 423, 604–605 (2003)

    Article  ADS  Google Scholar 

  49. V. Mocella, Negative refraction in photonic crystals: thickness dependence and Pendellosung phenomenon. Opt. Express 13, 1361–1367 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur McGurn .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McGurn, A. (2018). Metamaterials. In: Nanophotonics. Springer Series in Optical Sciences, vol 213. Springer, Cham. https://doi.org/10.1007/978-3-319-77072-7_5

Download citation

Publish with us

Policies and ethics