Skip to main content

Set-Valued and Lyapunov Methods for MPC

  • Chapter
  • First Online:
Handbook of Model Predictive Control

Part of the book series: Control Engineering ((CONTRENGIN))

Abstract

Model predictive control (MPC), sometimes referred to as the receding horizon control, is an optimization-based approach to stabilization of discrete-time control systems. It is well-known that infinite-horizon optimal control, with the Linear-Quadratic Regulator [1] as the fundamental example, can provide optimal controls that result in asymptotically stabilizing feedback [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\mathbb{N}\) denotes the set of non-negative integers, and we use \(\mathbb{N}_{N}:=\{ 0, 1,\ldots,N - 1,N\}\) for any \(N \in \mathbb{N}\).

  2. 2.

    Terms admissible control sequence/s are used interchangeably with feasible control sequence/s.

  3. 3.

    The function \(f: \mathbb{R}^{n} \rightarrow [-\infty,\infty ]\) is lower semicontinuous at \(\overline{x} \in \mathbb{R}^{n}\) ( on \(\mathbb{R}^{n}\) ) if \(f(\overline{x}) \leq \liminf _{x\rightarrow \overline{x}}f(x)\) ( \(f(\overline{x}) \leq \liminf _{x\rightarrow \overline{x}}f(x)\) for every \(\overline{x} \in \mathbb{R}^{n}\) ).

  4. 4.

    The function \(f: \mathbb{R}^{n} \rightarrow [-\infty,\infty ]\) is upper semicontinuous at \(\overline{x} \in \mathbb{R}^{n}\) ( on \(\mathbb{R}^{n}\) ), if \(\limsup _{x\rightarrow \overline{x}}f(x) \leq f(\overline{x})\) ( \(\limsup _{x\rightarrow \overline{x}}f(x) \leq f(\overline{x})\) for every \(\overline{x} \in \mathbb{R}^{n}\) ).

  5. 5.

    For a convex \(f: \mathbb{R}^{n} \rightarrow (-\infty,\infty ]\), \(\partial f(x) = \left \{y \in \mathbb{R}^{n}\ :\ \forall x' \in \mathbb{R}^{n},\ f(x') \geq f(x) + y^{T}(x' - x)\right \}\), and if f is differentiable at \(x \in \mathbb{R}^{n}\) then ∂f(x) reduces to ∇f(x).

  6. 6.

    We say that x N results from u N−1 and x if, for each \(k \in \mathbb{N}_{N-1}\), x k+1 = f(x k, u k) with x 0 = x.

  7. 7.

    A function f: [0, ) → [0, ) is called a \(\mathcal{K}_{\infty }\)-class function if it is continuous, strictly increasing, f(0) = 0, and f(x) → as x.

  8. 8.

    In other words, for each \((x,u) \in \mathbb{R}^{n} \times \mathbb{R}^{m}\), the set F(x, u) is the set of all limits z = limi z i with z i = f(x i, u i) and (x i, u i) → (x, u).

References

  1. Anderson, B., Moore, J.: Optimal Control – Linear Quadratic Methods. Prentice-Hall, Upper Saddle River (1990)

    MATH  Google Scholar 

  2. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhauser, Boston (1990)

    MATH  Google Scholar 

  3. Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.: The explicit linear quadratic regulator for constrained systems. Automatica 38(1), 3–20 (2002)

    Article  MathSciNet  Google Scholar 

  4. Clarke, F., Ledyaev, Y., Stern, R.: Asymptotic stability and smooth Lyapunov functions. J. Differ. Equ. 149(1), 69–114 (1998)

    Article  MathSciNet  Google Scholar 

  5. Goebel, R., Sanfelice, R., Teel, A.: Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton University Press, Princeton (2012)

    MATH  Google Scholar 

  6. Grimm, G., Messina, M., Tuna, S., Teel, A.: Examples when nonlinear model predictive control is nonrobust. Automatica 40, 1729–1738 (2004)

    Article  MathSciNet  Google Scholar 

  7. Grüne, L., Panek, J.: Nonlinear Model Predictive Control: Theory and Algorithms. Communications and Control Engineering Series. Springer, Cham (2017)

    Google Scholar 

  8. Keerthi, S.S., Gilbert, E.G.: Optimal, infinite horizon feedback laws for a general class of constrained discrete time systems: stability and moving–horizon approximations. J. Optim. Theory Appl. 57, 265–293 (1988)

    Article  MathSciNet  Google Scholar 

  9. Kellett, C.M.: Classical converse theorems in Lyapunov’s second method. Discrete Contin. Dyn. Syst. Ser. B 20(8), 2333–2360 (2015)

    Article  MathSciNet  Google Scholar 

  10. Kellett, C., Teel, A.: Smooth Lyapunov functions and robustness of stability for difference inclusions. Syst. Control Lett. 52, 395–405 (2004)

    Article  MathSciNet  Google Scholar 

  11. Mayne, D.Q.: Model predictive control: Recent developments and future promise. Automatica 50, 2967–2986 (2014)

    Article  MathSciNet  Google Scholar 

  12. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: stability and optimality. Automatica 36, 789–814 (2000)

    Article  MathSciNet  Google Scholar 

  13. Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Eng. Pract. 11, 733–764 (2003)

    Article  Google Scholar 

  14. Qin, S.J., Badgwell, T.A.: Model-predictive control in practice. In: Baillieul, J., Samad, T. (eds.) Encyclopedia of Systems and Control. Springer, London (2015)

    Google Scholar 

  15. Raković, S.V.: Set theoretic methods in model predictive control. In: Nonlinear Model Predictive Control, pp. 41–54. Springer, Berlin (2009)

    Google Scholar 

  16. Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design. Nob Hill Publishing, Madison (2009)

    Google Scholar 

  17. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. A Series of Comprehensive Studies in Mathematics, vol. 317. Springer, Berlin (2009)

    Google Scholar 

Download references

Acknowledgements

R. Goebel was partially supported by the Simons Foundation Grant 315326.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saša V. Raković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goebel, R., Raković, S.V. (2019). Set-Valued and Lyapunov Methods for MPC. In: Raković, S., Levine, W. (eds) Handbook of Model Predictive Control. Control Engineering. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-77489-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77489-3_3

  • Published:

  • Publisher Name: Birkhäuser, Cham

  • Print ISBN: 978-3-319-77488-6

  • Online ISBN: 978-3-319-77489-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics