Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 792 Accesses

Abstract

One of the most intriguing yet challenging fields of research in contemporary condensed matter physics is the investigation of many-body effects in strongly correlated quantum systems. This class of materials provides an excellent playground for discovering exotic phenomena involving charge, lattice, spin and orbital degrees of freedom and leading to extraordinarily varied chemical and physical properties. Understanding electronic correlations in prototypical systems like cuprates and manganites can pave the route to the potential design and engineering of novel materials with tailored functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Bethe, Theorie der Beugung von Elektronen an Kristallen. Ann. Phys. 392(17), 55–129 (1928)

    Article  Google Scholar 

  2. A. Sommerfeld, I. Zusammenfassende Vorträge zum Hauptthema: Die Arten Chemischer Bindung und der Bau der Atome. Zur Frage nach der Bedeutung der Atommodelle. Z. Elktrochem. Angew. P, 34(9):426–430 (1928)

    Google Scholar 

  3. M.F. Bloch, Bemerkung zur Elektronentheorie des Ferromagnetismus und der Elektrischen Leitfähigkeit. Z. Phys. 57(7–8), 545–555 (1929)

    Article  ADS  MATH  Google Scholar 

  4. J.H. de Boer, E.J.W. Verwey, Semi-conductors with partially and with completely filled 3d-lattice bands. Proc. Phys. Soc. 49(4S), 59 (1937)

    Article  ADS  Google Scholar 

  5. N.F. Mott, R. Peierls, Discussion of the paper by de Boer and Verwey. Proc. Phys. Soc. 49(4S), 72 (1937)

    Article  ADS  Google Scholar 

  6. L.D. Landau, The theory of a Fermi liquid. Sov. Phys. JETP-USSR 3(6), 920–925 (1957)

    MathSciNet  MATH  Google Scholar 

  7. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108(5), 1175 (1957)

    Google Scholar 

  8. G. M. Eliashberg, Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys.-JETP Engl. Transl. 11(3) (1960). (United States)

    Google Scholar 

  9. J.G. Bednorz, K.A. Müller, Possible high T\(_C\) superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189–193 (1986)

    Article  ADS  Google Scholar 

  10. S. Jin, M. ThH Tiefel, R.A. McCormack, R. Fastnacht, L.H. Chen Ramesh, Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264(5157), 413–414 (1994)

    Google Scholar 

  11. Z.X. Shen, A. Lanzara, S. Ishihara, N. Nagaosa, Role of the electron-phonon interaction in the strongly correlated cuprate superconductors. Phil. Mag. B 82(13), 1349–1368 (2002)

    Article  ADS  Google Scholar 

  12. D.N. Basov, R.D. Averitt, D. van der Marel, M. Dressel, K. Haule, Electrodynamics of correlated electron materials. Rev. Mod. Phys. 83, 471–541 (2011)

    Article  ADS  Google Scholar 

  13. A.J. Millis, Optical conductivity and correlated electron physics, in Strong Interactions in Low Dimensions (Springer, Dordrecht, 2004), pp. 195–235

    Google Scholar 

  14. A. Damascelli, Probing the electronic structure of complex systems by ARPES. Phys. Scr. 2004(T109), 61 (2004)

    Article  Google Scholar 

  15. L.J.P. Ament, M. Van Veenendaal, T.P. Devereaux, J.P. Hill, J. Van Den Brink, Resonant inelastic x-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83(2), 705 (2011)

    Article  ADS  Google Scholar 

  16. P. Drude, Zur Elektronentheorie der Metalle. Ann. Phys. 306(3), 566–613 (1900)

    Article  Google Scholar 

  17. Y. Toyozawa, Optical Processes in Solids (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  18. G.D. Mahan, Many-Particle Physics (Springer Science & Business Media, 2013)

    Google Scholar 

  19. A.S. Alexandrov, Polarons in Advanced Materials, vol. 103 (Springer Science & Business Media, 2008)

    Google Scholar 

  20. D. Emin, Polarons (Cambridge University Press, 2013)

    Google Scholar 

  21. J.P. Carbotte, Properties of boson-exchange superconductors. Rev. Mod. Phys. 62(4), 1027 (1990)

    Article  ADS  Google Scholar 

  22. W.L. McMillan, Transition temperature of strong-coupled superconductors. Phys. Rev. 167(2), 331 (1968)

    Article  ADS  Google Scholar 

  23. Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, H. Hosono, Iron-based layered superconductor: LaOFeP. J. Am. Chem. Soc. 128(31), 10012–10013 (2006)

    Article  Google Scholar 

  24. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride. Nature 410(6824), 63–64 (2001)

    Article  ADS  Google Scholar 

  25. A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system. Nature 525(7567), 73–76 (2015)

    Article  ADS  Google Scholar 

  26. I. Errea, M. Calandra, C.J. Pickard, J. Nelson, R.J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, F. Mauri, High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor. Phys. Rev. Lett. 114, 157004 (2015)

    Article  ADS  Google Scholar 

  27. A. Bussmann-Holder, J. Köhler, M.H. Whangbo, A. Bianconi, A. Simon, High temperature superconductivity in sulfur hydride under ultrahigh pressure: a complex superconducting phase beyond conventional BCS. Novel Supercond. Mat. 2(1), 37–42 (2016)

    Google Scholar 

  28. A.Y. Liu, I. Mazin, J. Kortus, Beyond Eliashberg superconductivity in MgB\(_2\): anharmonicity, two-phonon scattering, and multiple gaps. Phys. Rev. Lett. 87(8), 087005 (2001)

    Article  ADS  Google Scholar 

  29. Y. Wang, T. Plackowski, A. Junod, Specific heat in the superconducting and normal state (2–300 K, 0–16 T), and magnetic susceptibility of the 38 K superconductor MgB\(_2\): evidence for a multicomponent gap. Physica C 355(3), 179–193 (2001)

    Article  ADS  Google Scholar 

  30. S. Souma, Y. Machida, T. Sato, T. Takahashi, H. Matsui, S.C. Wang, H. Ding, A. Kaminski, J.C. Campuzano, S. Sasaki et al., The origin of multiple superconducting gaps in MgB\(_2\). Nature 423(6935), 65–67 (2003)

    Article  ADS  Google Scholar 

  31. M. Iavarone, G. Karapetrov, A.E. Koshelev, W.K. Kwok, G.W. Crabtree, D.G. Hinks, W.N. Kang, E. Choi, Hyun J. Kim et al., Two-band superconductivity in MgB\(_2\). Phys. Rev. Lett. 89(18), 187002 (2002)

    Article  ADS  Google Scholar 

  32. M.R. Eskildsen, M. Kugler, S. Tanaka, J. Jun, S.M. Kazakov, J. Karpinski, Ø. Fischer, Vortex imaging in the \(\pi \) band of magnesium diboride. Phys. Rev. Lett. 89(18), 187003 (2002)

    Article  ADS  Google Scholar 

  33. X.K. Chen, M.J. Konstantinović, J.C. Irwin, D.D. Lawrie, J.P. Franck, Evidence for two superconducting gaps in MgB\(_2\). Phys. Rev. Lett. 87(15), 157002 (2001)

    Article  ADS  Google Scholar 

  34. A.F. Goncharov, V.V. Struzhkin, E. Gregoryanz, J. Hu, R.J. Hemley, H.-K. Mao, G. Lapertot, S.L. Budko, P.C. Canfield, Raman spectrum and lattice parameters of MgB\(_2\) as a function of pressure. Phys. Rev. B 64(10), 100509 (2001)

    Article  ADS  Google Scholar 

  35. J.W. Quilty, S. Lee, A. Yamamoto, S. Tajima, Superconducting gap in MgB\(_2\): electronic Raman scattering measurements of single crystals. Phys. Rev. Lett. 88(8), 087001 (2002)

    Article  ADS  Google Scholar 

  36. J.W. Quilty, S. Lee, S. Tajima, A. Yamanaka, c-Axis Raman scattering spectra of MgB\(_2\): observation of a dirty-limit gap in the \(\pi \) bands. Phys. Rev. Lett. 90(20), 207006 (2003)

    Article  ADS  Google Scholar 

  37. G. Blumberg, A. Mialitsin, B.S. Dennis, N.D. Zhigadlo, J. Karpinski, Multi-gap superconductivity in MgB\(_2\): magneto-Raman spectroscopy. Physica C 456(1), 75–82 (2007)

    Article  ADS  Google Scholar 

  38. V. Guritanu, A.B. Kuzmenko, D. van der Marel, S.M. Kazakov, N.D. Zhigadlo, J. Karpinski, Anisotropic optical conductivity and two colors of MgB\(_2\). Phys. Rev. B 73(10), 104509 (2006)

    Article  ADS  Google Scholar 

  39. J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov, L.L. Boyer, Superconductivity of metallic boron in MgB\(_2\). Phys. Rev. Lett. 86(20), 4656 (2001)

    Article  ADS  Google Scholar 

  40. K.P. Bohnen, R. Heid, B. Renker, Phonon dispersion and electron-phonon coupling in MgB\(_2\) and AlB\(_2\). Phys. Rev. Lett. 86(25), 5771 (2001)

    Article  ADS  Google Scholar 

  41. Y. Kong, O.V. Dolgov, O. Jepsen, O.K. Andersen, electron-phonon interaction in the normal and superconducting states of MgB\(_2\). Phys. Rev. B 64(2), 020501 (2001)

    Article  ADS  Google Scholar 

  42. K. Kunc, I. Loa, K. Syassen, R.K. Kremer, K. Ahn, MgB\(_2\) under pressure: phonon calculations, Raman spectroscopy, and optical reflectance. J. Phys. Cond. Matt. 13(44), 9945 (2001)

    Article  ADS  Google Scholar 

  43. H.J. Choi, D. Roundy, H. Sun, M.L. Cohen, S.G. Louie, The origin of the anomalous superconducting properties of MgB\(_2\). Nature 418(6899), 758–760 (2002)

    Article  ADS  Google Scholar 

  44. T. Yildirim, O. Gülseren, J.W. Lynn, C.M. Brown, T.J. Udovic, Q. Huang, N. Rogado, K.A. Regan, M.A. Hayward, J.S. Slusky, T. He, M.K. Haas, P. Khalifah, K. Inumaru, R.J. Cava, Giant anharmonicity and nonlinear electron-phonon coupling in MgB\(_2\): a combined first-principles calculation and neutron scattering study. Phys. Rev. Lett. 87(3), 037001 (2001)

    Article  ADS  Google Scholar 

  45. Y.Q. Cai, P. Chow, O.D. Restrepo, Y. Takano, K. Togano, H. Kito, H. Ishii, C.C. Chen, K.S. Liang, C.T. Chen et al., Low-energy charge-density excitations in MgB\(_2\): striking interplay between single-particle and collective behavior for large momenta. Phys. Rev. Lett. 97(17), 176402 (2006)

    Article  ADS  Google Scholar 

  46. L.D. Landau, S.I. Pekar, Polaron effective mass. Zh. Eksp. Teor. Fiz. 18(5), 419 (1948)

    Google Scholar 

  47. H. Fröhlich, Electrons in lattice fields. Adv. Phys. 3(11), 325–361 (1954)

    Article  ADS  MATH  Google Scholar 

  48. T. Holstein, Studies of polaron motion: part I the molecular-crystal model. Ann. Phys. 8(3), 325–342 (1959)

    Article  ADS  MATH  Google Scholar 

  49. T. Holstein, Studies of polaron motion: part II the small polaron. Ann. Phys. 8(3), 343–389 (1959)

    Article  ADS  MATH  Google Scholar 

  50. R.P. Feynman, Slow electrons in a polar crystal. Phys. Rev. 97(3), 660 (1955)

    Article  ADS  MATH  Google Scholar 

  51. A.M. Stoneham, J. Gavartin, A.L. Shluger, A.V. Kimmel, G. Aeppli, C. Renner et al., Trapping, self-trapping and the polaron family. J. Phys-Condens. Mat. 19(25), 255208 (2007)

    Article  ADS  Google Scholar 

  52. P.B. Allen, V. Perebeinos, Self-trapped exciton and Franck-Condon spectra predicted in LaMnO\(_3\). Phys. Rev. Lett. 83(23), 4828 (1999)

    Article  ADS  Google Scholar 

  53. J. Callaway, D.P. Chen, D.G. Kanhere, Q. Li, Pairing in finite cluster models. Physica B 163(1–3), 127–128 (1990)

    Article  ADS  Google Scholar 

  54. C.J. Thompson, T. Matsubara, A unified statistical mechanical approach to high-temperature superconductivity, in Studies of High Temperature Superconductors (1991)

    Google Scholar 

  55. A. Macridin, G.A. Sawatzky, M. Jarrell, Two-dimensional Hubbard-Holstein bipolaron. Phys. Rev. B 69(24), 245111 (2004)

    Article  ADS  Google Scholar 

  56. A.S. Mishchenko, N. Nagaosa, Z.-X. Shen, G. De Filippis, V. Cataudella, T.P. Devereaux, C. Bernhard, K.W. Kim, J. Zaanen, Charge dynamics of doped holes in high T\(_c\) cuprate superconductors: a clue from optical conductivity. Phys. Rev. Lett. 100(16), 166401 (2008)

    Article  ADS  Google Scholar 

  57. G. De Filippis, V. Cataudella, E.A. Nowadnick, T.P. Devereaux, A.S. Mishchenko, N. Nagaosa, Quantum dynamics of the Hubbard-Holstein model in equilibrium and nonequilibrium: application to pump-probe phenomena. Phys. Rev. Lett. 109(17), 176402 (2012)

    Article  ADS  Google Scholar 

  58. J.P. Franck, D.M. Ginsberg, Physical properties of high temperature superconductors IV. World Sci, Singapore, p. 189 (1994)

    Google Scholar 

  59. H.J.A. Molegraaf, C. Presura, D. Van Der Marel, P.H. Kes, M. Li, Superconductivity-induced transfer of in-plane spectral weight in Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Science 295(5563), 2239–2241 (2002)

    Article  ADS  Google Scholar 

  60. J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura, S. Uchida, Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375(6532), 561–563 (1995)

    Article  ADS  Google Scholar 

  61. A. Bianconi, N.L. Saini, A. Lanzara, M. Missori, T. Rossetti, H. Oyanagi, H. Yamaguchi, K. Oka, T. Ito, Determination of the local lattice distortions in the CuO\(_2\) plane of La\(_{1.85}\)Sr\(_{0.15}\)CuO\(_4\). Phys. Rev. Lett. 76(18), 3412 (1996)

    Article  ADS  Google Scholar 

  62. V. Hinkov, D. Haug, B. Fauqué, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C.T. Lin, B. Keimer, Electronic liquid crystal state in the high-temperature superconductor YBa\(_2\)Cu\(_3\)O\(_{6.45}\). Science 319(5863), 597–600 (2008)

    Article  Google Scholar 

  63. M. Vershinin, S. Misra, S. Ono, Y. Abe, Y. Ando, A. Yazdani, Local ordering in the pseudogap state of the high-T\(_c\) superconductor Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Science 303(5666), 1995–1998 (2004)

    Article  ADS  Google Scholar 

  64. G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa, C. Mazzoli, N.B. Brookes, G.M. De Luca, A. Frano, D.G. Hawthorn, F. He, Long-range incommensurate charge fluctuations in (Y, Nd)Ba\(_2\)Cu\(_3\)O\(_{6+x}\). Science 303(6096), 821–825 (2012)

    Article  ADS  Google Scholar 

  65. M. Hashimoto, E.A. Nowadnick, R.-H. He, I.M. Vishik, B. Moritz, Y. He, K. Tanaka, R.G. Moore, D. Lu, Y. Yoshida, M. Ishikado, T. Sasagawa, K. Fujita, S. Ishida, S. Uchida, H. Eisaki, Z. Hussain, T.P. Devereaux, Z.-X. Shen, Direct spectroscopic evidence for phase competition between the pseudogap and superconductivity in Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Nat. Mat. 14(1), 37–42 (2015)

    Article  Google Scholar 

  66. J. Chang, E. Blackburn, A.T. Holmes, N.B. Christensen, J. Larsen, J. Mesot, R. Liang, D.A. Bonn, W.N. Hardy, A. Watenphul, Direct observation of competition between superconductivity and charge density wave order in YBa\(_2\)Cu\(_3\)O\(_{6.67}\). Nat. Phys. 8(12), 871–876 (2012)

    Article  Google Scholar 

  67. W.W. Warren Jr., R.E. Walstedt, G.F. Brennert, R.J. Cava, R. Tycko, R.F. Bell, G. Dabbagh, Cu spin dynamics and superconducting precursor effects in planes above T\(_C\) in YBa\(_2\)Cu\(_3\)O\(_{6.7}\). Phys. Rev. Lett. 62(10), 1193 (1989)

    Article  ADS  Google Scholar 

  68. H. Alloul, T. Ohno, P. Mendels, \(^{89}\)Y NMR evidence for a Fermi-liquid behavior in YBa\(_2\)Cu\(_3\)O\(_{6+x}\). Phys. Rev. Lett. 63(16), 1700 (1989)

    Article  ADS  Google Scholar 

  69. M. Takigawa, A.P. Reyes, P.C. Hammel, J.D. Thompson, R.H. Heffner, Z. Fisk, K.C. Ott, Cu and O NMR studies of the magnetic properties of YBa\(_2\)Cu\(_3\)O\(_{6.63}\) (T\(_C\) = 62 K). Phys. Rev. B 43(1), 247 (1991)

    Article  ADS  Google Scholar 

  70. J.W. Loram, K.A. Mirza, J.R. Cooper, W.Y. Liang, Electronic specific heat of YBa\(_2\)Cu\(_3\)O\(_{6+x}\) from 1.8 to 300 K. Phys. Rev. Lett. 71(11), 1740 (1993)

    Article  ADS  Google Scholar 

  71. K.K. Gomes, A.N. Pasupathy, A. Pushp, S. Ono, Y. Ando, A. Yazdani, Visualizing pair formation on the atomic scale in the high-T\(_C\) superconductor Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Nature 447(7144), 569–572 (2007)

    Article  ADS  Google Scholar 

  72. A. Yazdani, Visualizing pair formation on the atomic scale and the search for the mechanism of superconductivity in High-T\(_C\) cuprates. J. Phys. Cond. Matt. 21(16), 164214 (2009)

    Article  ADS  Google Scholar 

  73. M. Shi, A. Bendounan, E. Razzoli, S. Rosenkranz, M.R. Norman, J.C. Campuzano, J. Chang, M.Månsson, Y. Sassa, T. Claesson, O. Tjernberg, L. Patthey, N. Momono, M. Oda, M. Ido, S. Guerrero, C. Mudry, J. Mesot, Spectroscopic evidence for preformed Cooper pairs in the pseudogap phase of cuprates. EPL (Europhys. Lett.), 88(2):27008 (2009)

    Google Scholar 

  74. T. Kondo, Y. Hamaya, A.D. Palczewski, T. Takeuchi, J.S. Wen, Z.J. Xu, G. Gu, J. Schmalian, A. Kaminski, Disentangling Cooper-pair formation above the transition temperature from the pseudogap state in the cuprates. Nat. Phys. 7(1), 21–25 (2011)

    Article  Google Scholar 

  75. T. Kondo, W. Malaeb, Y. Ishida, T. Sasagawa, H. Sakamoto, T. Takeuchi, T. Tohyama, S. Shin, Point nodes persisting far beyond T\(_{\rm {C}}\) in Bi2212. Nat. Comm. 6, 7699 (2015)

    Google Scholar 

  76. N. Hussey, Phenomenology of the normal state in-plane transport properties of high-\({\rm {T}}_{\rm {C}}\) cuprates. J. Phys. Cond. Matt. 20(12), 123201 (2008)

    Google Scholar 

  77. J. Chang, M. Maansson, S. Pailhes, T. Claesson, O.J. Lipscombe, S.M. Hayden, L. Patthey, O. Tjernberg, J. Mesot. Anisotropic breakdown of Fermi liquid quasiparticle excitations in overdoped La\(_{2-x}\)Sr\(_x\)CuO\(_4\). Nat. Comm. 4 (2013)

    Google Scholar 

  78. S. Uchida, T. Ido, H. Takagi, T. Arima, Y. Tokura, S. Tajima, Optical spectra of La\(_{2-x}\)Sr\(_x\)CuO\(_4\): effect of carrier doping on the electronic structure of the CuO\(_2\) plane. Phys. Rev. B 43(10), 7942 (1991)

    Article  ADS  Google Scholar 

  79. T. Valla, A.V. Fedorov, P.D. Johnson, B.O. Wells, S.L. Hulbert, Q. Li, G.D. Gu, N. Koshizuka, Evidence for quantum critical behavior in the optimally doped cuprate Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Science 285(5436), 2110–2113 (1999)

    Article  Google Scholar 

  80. S. Sachdev, Where is the quantum critical point in the cuprate superconductors? Phys. Stat. Sol. (b) 247(3), 537–543 (2010)

    Article  ADS  Google Scholar 

  81. J.P. Falck, A. Levy, M.A. Kastner, R.J. Birgeneau, Charge-transfer spectrum and its temperature dependence in La\(_2\)CuO\(_4\). Phys. Rev. Lett. 69(7), 1109 (1992)

    Article  ADS  Google Scholar 

  82. A.J. Millis, A. Zimmers, R.P.S.M. Lobo, N. Bontemps, C.C. Homes, Mott physics and the optical conductivity of electron-doped cuprates. Phys. Rev. B 72(22), 224517 (2005)

    Article  ADS  Google Scholar 

  83. N. Hussey, High-temperature superconductivity: isolating the gap. Nat. Phys. 12(4), 290–291 (2016)

    Article  Google Scholar 

  84. C. Weber, K. Haule, G. Kotliar, Strength of correlations in electron-and hole-doped cuprates. Nat. Phys. 6(8), 574–578 (2010)

    Article  Google Scholar 

  85. C. Weber, K. Haule, G. Kotliar, Apical oxygens and correlation strength in electron-and hole-doped copper oxides. Phys. Rev. B 82(12), 125107 (2010)

    Article  ADS  Google Scholar 

  86. K. McElroy, J. Lee, J.A. Slezak, D.-H. Lee, H. Eisaki, S. Uchida, J.C. Davis, Atomic-scale sources and mechanism of nanoscale electronic disorder in Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Science 309(5737), 1048–1052 (2005)

    Article  ADS  Google Scholar 

  87. D.J. Scalapino, E. Loh, J.E. Hirsch, \(d\)-Wave pairing near a spin-density-wave instability. Phys. Rev. B 34, 8190–8192 (1986)

    Article  ADS  Google Scholar 

  88. R. Haslinger, A.V. Chubukov, A. Abanov, Spectral function and conductivity in the normal state of the cuprates: a spin fluctuation study. Phys. Rev. B 63, 020503 (2000)

    Article  Google Scholar 

  89. C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams, A.E. Ruckenstein, Phenomenology of the normal state of Cu-O high-temperature superconductors. Phys. Rev. Lett. 63, 1996–1999 (1989)

    Article  ADS  Google Scholar 

  90. J.P. Carbotte, E. Schachinger, D.N. Basov, Coupling strength of charge carriers to spin fluctuations in high-temperature superconductors. Nature 401(6751), 354–356 (1999)

    Article  ADS  Google Scholar 

  91. S.V. Dordevic, C.C. Homes, J.J. Tu, T. Valla, M. Strongin, P.D. Johnson, G.D. Gu, D.N. Basov, Extracting the electron-boson spectral function \({\alpha }^{2}F(\omega )\) from infrared and photoemission data using inverse theory. Phys. Rev. B 71, 104529 (2005)

    Article  ADS  Google Scholar 

  92. P.V. Bogdanov, A. Lanzara, S.A. Kellar, X.J. Zhou, E.D. Lu, W.J. Zheng, G. Gu, J.I. Shimoyama, K. Kishio, H. Ikeda, R. Yoshizaki, Z. Hussain, Z.X. Shen, Evidence for an energy scale for quasiparticle dispersion in \({\rm {Bi}}_{2}{\rm {Sr}}_{2}{\rm {CaCu}}_{2}{\rm {O}}_{8}\). Phys. Rev. Lett. 85, 2581–2584 (2000)

    Google Scholar 

  93. A. Lanzara, P.V. Bogdanov, X.J. Zhou, S.A. Kellar, D.L. Feng, E.D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio et al., Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors. Nature 412(6846), 510–514 (2001)

    Article  ADS  Google Scholar 

  94. M.R. Norman, A.V. Chubukov, High-frequency behavior of the infrared conductivity of cuprates. Phys. Rev. B 73, 140501 (2006)

    Article  ADS  Google Scholar 

  95. P.W. Anderson, Is there glue in cuprate superconductors? Science 316(5832), 1705–1707 (2007)

    Article  Google Scholar 

  96. P. Phillips, Mottness. Ann. Phys. 321(7), 1634–1650 (2006)

    Article  ADS  MATH  Google Scholar 

  97. A.V. Boris, N.N. Kovaleva, O.V. Dolgov, T. Holden, C.T. Lin, B. Keimer, C. Bernhard, In-plane spectral weight shift of charge carriers in YBa\(_2\)Cu\(_3\)O\(_{6.9}\). Science 304(5671), 708–710 (2004)

    Article  ADS  Google Scholar 

  98. T.D. Stanescu, P. Phillips, Pseudogap in doped mott insulators is the near-neighbor analogue of the Mott gap. Phys. Rev. Lett. 91(1), 017002 (2003)

    Article  ADS  Google Scholar 

  99. F. Carbone, A.B. Kuzmenko, H.J. Molegraaf, E. Van Heumen, V. Lukovac, F. Marsiglio, D. van der Marel, K. Haule, G. Kotliar, H. Berger, Doping dependence of the redistribution of optical spectral weight in Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Phys. Rev. B 74(6), 064510 (2006)

    Article  ADS  Google Scholar 

  100. M. Rübhausen, A. Gozar, M.V. Klein, P. Guptasarma, D.G. Hinks, Superconductivity-induced optical changes for energies of 100\(\delta \) in the cuprates. Phys. Rev. B 63(22), 224514 (2001)

    Article  ADS  Google Scholar 

  101. J. Bäckström, D. Budelmann, R. Rauer, M. Rübhausen, H. Rodriguez, H. Adrian, Optical properties of YBa\(_2\)Cu\(_3\)O\(_{7-\delta }\) and PrBa\(_2\)Cu\(_3\)O\(_{7-\delta }\) films: high-energy correlations and metallicity. Phys. Rev. B 70(17), 174502 (2004)

    Article  ADS  Google Scholar 

  102. M. Tinkham. Introduction to Superconductivity: (Dover Books on Physics), vol. I (2004)

    Google Scholar 

  103. A.J. Leggett, Where is the energy saved in cuprate superconductivity? J. Phys. Chem. Solids 59(10), 1729–1732 (1998)

    Article  ADS  Google Scholar 

  104. A.J. Leggett, A midinfrared scenario for cuprate superconductivity. Proc. Natl. Acad. Sci. 96(15), 8365–8372 (1999)

    Article  ADS  Google Scholar 

  105. A.J. Leggett, Cuprate superconductivity: dependence of T\(_C\) on the c-axis layering structure. Phys. Rev. Lett. 83(2), 392 (1999)

    Article  ADS  Google Scholar 

  106. J. Levallois, M.K. Tran, D. Pouliot, C.N. Presura, L.H. Greene, J.N. Eckstein, J. Uccelli, E. Giannini, G.D. Gu, A.J. Leggett, D. van der Marel, Temperature-dependent ellipsometry measurements of partial Coulomb energy in superconducting cuprates. Phys. Rev. X 6, 031027 (2016)

    Google Scholar 

  107. N.N. Bogoliubov, V.V. Tolmachev, D.V. Shirkov, A new method in the theory of superconductivity, in Academy of Sciences of the USSR (1958)

    Google Scholar 

  108. B. Mansart, J. Lorenzana, A. Mann, A. Odeh, M. Scarongella, M. Chergui, F. Carbone, Coupling of a high-energy excitation to superconducting quasiparticles in a cuprate from coherent charge fluctuation spectroscopy. Proc. Natl. Acad. Sci. 110(12), 4539–4544 (2013)

    Article  ADS  Google Scholar 

  109. J. Lorenzana, B. Mansart, A. Mann, A. Odeh, M. Chergui, F. Carbone, Investigating pairing interactions with coherent charge fluctuation spectroscopy. Eur. Phys. J. Spec. Top. 222(5), 1223–1239 (2013)

    Article  Google Scholar 

  110. R.A. Kaindl, M. Woerner, T. Elsaesser, D.C. Smith, J.F. Ryan, G.A. Farnan, M.P. McCurry, D.G. Walmsley, Ultrafast mid-infrared response of YBa\(_2\)Cu\(_3\)O\(_{7-\delta }\). Science 287(5452), 470–473 (2000)

    Article  ADS  Google Scholar 

  111. A. Pashkin, M. Porer, M. Beyer, Kyung W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, Femtosecond response of quasiparticles and phonons in superconducting YBa\(_2\)Cu\(_3\)O\(_{7-\delta }\) studied by wideband terahertz spectroscopy. Phys. Rev. Lett. 105(6), 067001 (2010)

    Article  ADS  Google Scholar 

  112. D. Khomskii, Transition Metal Compounds (Cambridge University Press, 2014)

    Google Scholar 

  113. Y. Tokura, N. Nagaosa, Orbital physics in transition-metal oxides. Science 288(5465), 462–468 (2000)

    Article  ADS  Google Scholar 

  114. N.N. Kovaleva, A.V. Boris, C. Bernhard, A. Kulakov, A. Pimenov, A.M. Balbashov, G. Khaliullin, B. Keimer, Spin-controlled Mott-Hubbard bands in LaMnO\(_3\) probed by optical ellipsometry. Phys. Rev. Lett. 93(14), 147204 (2004)

    Article  ADS  Google Scholar 

  115. A.S. Moskvin, A.A. Makhnev, L.V. Nomerovannaya, N.N. Loshkareva, A.M. Balbashov, Interplay of p-d and d-d charge transfer transitions in rare-earth perovskite manganites. Phys. Rev. B 82(3), 035106 (2010)

    Article  ADS  Google Scholar 

  116. J. Zaanen, G.A. Sawatzky, J.W. Allen, Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55(4), 418 (1985)

    Article  ADS  Google Scholar 

  117. J.F. Lawler, J.G. Lunney, J.M.D. Coey, Magneto-optic Faraday effect in (La\(_{1-x}\)Ca\(_x\))MnO\(_3\) films. Appl. Phys. Lett. 65(23), 3017–3018 (1994)

    Article  ADS  Google Scholar 

  118. N.N. Kovaleva, K.I. Kugel, Z. Pot\({\mathring{{\rm{u}}}}\)ček, O.E. Kusmartseva, N.S. Goryachev, Z. Bryknar, E.I. Demikhov, V.A. Trepakov, A. Dejneka, F.V. Kusmartsev, A.M. Stoneham, Optical evidence of quantum rotor orbital excitations in orthorhombic manganites. J. Exp. Theor. Phys. 122(5), 890–901 (2016)

    Article  ADS  Google Scholar 

  119. T. Kimura, S. Ishihara, H. Shintani, T. Arima, K.T. Takahashi, K. Ishizaka, Y. Tokura, Distorted perovskite with e\(_g^1\) configuration as a frustrated spin system. Phys. Rev. B 68(6), 060403 (2003)

    Article  ADS  Google Scholar 

  120. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic control of ferroelectric polarization. Nature 426(6962), 55–58 (2003)

    Article  ADS  Google Scholar 

  121. T. Goto, T. Kimura, G. Lawes, A.P. Ramirez, Y. Tokura, Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys. Rev. Lett. 92(25), 257201 (2004)

    Article  ADS  Google Scholar 

  122. M. Kenzelmann, A.B. Harris, S. Jonas, C. Broholm, J. Schefer, S.B. Kim, C.L. Zhang, S.-W. Cheong, O.P. Vajk, J.W. Lynn, Magnetic inversion symmetry breaking and ferroelectricity in TbMnO\(_3\). Phys. Rev. Lett. 95(8), 087206 (2005)

    Article  ADS  Google Scholar 

  123. A.B. Sushkov, R. Valdés Aguilar, S. Park, S-W. Cheong, H.D. Drew. Electromagnons in multiferroic \({{\rm {YMn}}}_{2}{{\rm {O}}}_{5}\) and \({\rm {TbMn}}_{2}{{\rm {O}}}_{5}\). Phys. Rev. Lett. 98, 027202 (2007)

    Google Scholar 

  124. Y. Takahashi, N. Kida, Y. Yamasaki, J. Fujioka, T. Arima, R. Shimano, S. Miyahara, M. Mochizuki, N. Furukawa, Y. Tokura, Evidence for an electric-dipole active continuum band of spin excitations in multiferroic \({{\rm {TbMnO}}}_{3}\). Phys. Rev. Lett. 101, 187201 (2008)

    Google Scholar 

  125. A. Pimenov, A.A. Mukhin, V.Y. Ivanov, V.D. Travkin, A.M. Balbashov, A. Loidl, Possible evidence for electromagnons in multiferroic manganites. Nat. Phys. 2(2), 97–100 (2006)

    Article  Google Scholar 

  126. P. Rovillain, M. Cazayous, Y. Gallais, A. Sacuto, M.-A. Measson, H. Sakata, Magnetoelectric excitations in multiferroic TbMnO\(_3\) by Raman scattering. Phys. Rev. B 81, 054428 (2010)

    Article  ADS  Google Scholar 

  127. P. Rovillain, J. Liu, M. Cazayous, Y. Gallais, M.-A. Measson, H. Sakata, A. Sacuto, Electromagnon and phonon excitations in multiferroic TbMnO\(_3\). Phys. Rev. B 86, 014437 (2012)

    Article  ADS  Google Scholar 

  128. D. Polli, M. Rini, S. Wall, R.W. Schoenlein, Y. Tomioka, Y. Tokura, G. Cerullo, A. Cavalleri, Coherent orbital waves in the photo-induced insulator-metal dynamics of a magnetoresistive manganite. Nat. Mat. 6(9), 643–647 (2007)

    Article  Google Scholar 

  129. S. Wall, D. Prabhakaran, A.T. Boothroyd, A. Cavalleri, Ultrafast coupling between light, coherent lattice vibrations, and the magnetic structure of semicovalent LaMnO\(_3\). Phys. Rev. Lett. 103(9), 097402 (2009)

    Article  ADS  Google Scholar 

  130. I.P. Handayani, R.I. Tobey, J. Janusonis, D.A. Mazurenko, N. Mufti, A.A. Nugroho, M.O. Tjia, T.T.M. Palstra, P.H.M. van Loosdrecht, Dynamics of photo-excited electrons in magnetically ordered TbMnO\(_3\). J. Phys-Condens. Mat. 25(11), 116007 (2013)

    Article  ADS  Google Scholar 

  131. P. Beaud, A. Caviezel, S.O. Mariager, L. Rettig, G. Ingold, C. Dornes, S.W. Huang, J.A. Johnson, M. Radovic, T. Huber et al., A time-dependent order parameter for ultrafast photoinduced phase transitions. Nat. Mat. 13(10), 923–927 (2014)

    Article  Google Scholar 

  132. J.A. Johnson, T. Kubacka, M.C. Hoffmann, C. Vicario, S. de Jong, P. Beaud, S. Grübel, S.-W. Huang, L. Huber, Y.W. Windsor, E.M. Bothschafter, L. Rettig, M. Ramakrishnan, A. Alberca, L. Patthey, Y.-D. Chuang, J.J. Turner, G.L. Dakovski, W.-S. Lee, M.P. Minitti, W. Schlotter, R.G. Moore, C.P. Hauri, S.M. Koohpayeh, V. Scagnoli, G. Ingold, S.L. Johnson, U. Staub, Magnetic order dynamics in optically excited multiferroic \({{\rm {TbMn}}} {{\rm {O}}}_{3}\). Phys. Rev. B 92, 184429 (2015)

    Google Scholar 

  133. T. Ogasawara, T. Kimura, T. Ishikawa, M. Kuwata-Gonokami, Y. Tokura, Dynamics of photoinduced melting of charge/orbital order in a layered manganite La\(_{0.5}\)Sr\(_{1.5}\)MnO\(_4\). Phys. Rev. B 63(11), 113105 (2001)

    Article  ADS  Google Scholar 

  134. M. Matsubara, Y. Okimoto, T. Ogasawara, Y. Tomioka, H. Okamoto, Y. Tokura, Ultrafast photoinduced insulator-ferromagnet transition in the perovskite manganite \({{\rm {Gd}}}_{0.55}{{\rm {Sr}}}_{0.45}{{\rm {MnO}}}_{3}\). Phys. Rev. Lett. 99, 207401 (2007)

    Google Scholar 

  135. P. Beaud, S.L. Johnson, E. Vorobeva, U. Staub, R.A. De Souza, C.J. Milne, Q.X. Jia, G. Ingold, Ultrafast structural phase transition driven by photoinduced melting of charge and orbital order. Phys. Rev. Lett. 103(15), 155702 (2009)

    Article  ADS  Google Scholar 

  136. K.B. Tolpygo, Physical properties of the salt lattice constructed from deforming ions. J. Exp. Theor. Phys. (USSR) 20(6), 497–509 (1950)

    Google Scholar 

  137. S. Savasta, O. Di Stefano, V. Savona, W. Langbein, Quantum complementarity of microcavity polaritons. Phys. Rev. Lett. 94(24), 246401 (2005)

    Article  ADS  Google Scholar 

  138. T.C.H. Liew, V. Savona, Single photons from coupled quantum modes. Phys. Rev. Lett. 104(18), 183601 (2010)

    Article  ADS  Google Scholar 

  139. K.G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T.C.H. Liew, V. Savona, A.V. Kavokin, R. André, B. Deveaud-Plédran, Probing the dynamics of spontaneous quantum vortices in polariton superfluids. Phys. Rev. Lett. 106(11), 115301 (2011)

    Article  ADS  Google Scholar 

  140. P.W. Anderson, More is different. Science 177(4047), 393–396 (1972)

    Article  ADS  Google Scholar 

  141. Z. Fei, A.S. Rodin, G.O. Andreev, W. Bao, A.S. McLeod, M. Wagner, L.M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M.M. Fogler, A.H. Castro Neto, C.N. Lau, F. Keilmann, D.N. Basov, D.N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487(7405), 82–85 (2012)

    Article  ADS  Google Scholar 

  142. P. Abbamonte, T. Graber, J.P. Reed, S. Smadici, C.-L. Yeh, A. Shukla, J.-P. Rueff, W. Ku, Dynamical reconstruction of the exciton in LiF with inelastic x-ray scattering. Proc. Natl. Acad. Sci. 105(34), 12159–12163 (2008)

    Article  ADS  Google Scholar 

  143. M. Först, C. Manzoni, S. Kaiser, Y. Tomioka, Y. Tokura, R. Merlin, A. Cavalleri, Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7(11), 854–856 (2011)

    Article  Google Scholar 

  144. X. Zhang, T. Liu, M.E. Flatté, H.X. Tang, Electric-field coupling to spin waves in a centrosymmetric ferrite. Phys. Rev. Lett. 113, 037202 (2014)

    Article  ADS  Google Scholar 

  145. S.A. Maier. Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007)

    Google Scholar 

  146. R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106(5), 874 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  147. B. Liedberg, C. Nylander, I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sens. Act. 4, 299–304 (1983)

    Article  Google Scholar 

  148. S.K. Saikin, A. Eisfeld, S. Valleau, A. Aspuru-Guzik, Photonics meets excitonics: natural and artificial molecular aggregates. Nanophotonics 2(1), 21–38 (2013)

    Article  ADS  Google Scholar 

  149. M. Först, R.I. Tobey, S. Wall, H. Bromberger, V. Khanna, A.L. Cavalieri, Y.-D. Chuang, W.S. Lee, R. Moore, W.F. Schlotter, J.J. Turner, O. Krupin, M. Trigo, H. Zheng, J.F. Mitchell, S.S. Dhesi, J.P. Hill, A. Cavalleri, Driving magnetic order in a manganite by ultrafast lattice excitation. Phys. Rev. B 84, 241104 (2011)

    Article  ADS  Google Scholar 

  150. V.V. Kruglyak, S.O. Demokritov, D. Grundler, Magnonics. J. Phys. D Appl. Phys. 43(26), 264001 (2010)

    Article  ADS  Google Scholar 

  151. T. Feurer, N.S. Stoyanov, D.W. Ward, J.C. Vaughan, E.R. Statz, K.A. Nelson, Terahertz polaritonics. Annu. Rev. Mater. Res. 37, 317–350 (2007)

    Article  ADS  Google Scholar 

  152. E. Saitoh, S. Okamoto, K.T. Takahashi, K. Tobe, K. Yamamoto, T. Kimura, S. Ishihara, S. Maekawa, Y. Tokura, Observation of orbital waves as elementary excitations in a solid. Nature 410(6825), 180–183 (2001)

    Article  ADS  Google Scholar 

  153. Y. Nambu, G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. I. Phys. Rev. 122(1), 345 (1961)

    Article  ADS  Google Scholar 

  154. W.L. McMillan, Theory of discommensurations and the commensurate-incommensurate charge-density-wave phase transition. Phys. Rev. B 14(4), 1496 (1976)

    Article  ADS  Google Scholar 

  155. P.W. Anderson, Plasmons, gauge invariance, and mass. Phys. Rev. 130, 439–442 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  156. P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13(16), 508 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  157. A.J. Leggett, Number-phase fluctuations in two-band superconductors. Prog. Theor. Phys. 36(5), 901–930 (1966)

    Article  ADS  Google Scholar 

  158. D. Pines, D. Bohm, A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions. Phys. Rev. 85(2), 338 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  159. D. van der Marel, A. Tsvetkov, Transverse optical plasmons in layered superconductors. Czech J. Phys. 46(6), 3165–3168 (1996)

    Article  Google Scholar 

  160. W. Hayes, R. Loudon, Scattering of Light by Crystals (Courier Corporation, 2012)

    Google Scholar 

  161. S. Galambosi, J.A. Soininen, A. Mattila, S. Huotari, S. Manninen, G. Vankó, N.D. Zhigadlo, J. Karpinski, K. Hämäläinen, Inelastic x-ray scattering study of collective electron excitations in MgB\(_2\). Phys. Rev. B 71(6), 060504 (2005)

    Article  ADS  Google Scholar 

  162. M. Dressel, G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, 2002)

    Google Scholar 

  163. Y. U. Peter and M. Cardona. Fundamentals of Semiconductors: Physics and Materials Properties (Springer Science & Business Media, 2010)

    Google Scholar 

  164. L.D. Landau, On the vibrations of the electronic plasma. Zh. Eksp. Teor. Fiz. 10, 25 (1946)

    MathSciNet  MATH  Google Scholar 

  165. A. Toschi, M. Capone, M. Ortolani, P. Calvani, S. Lupi, C. Castellani, Temperature dependence of the optical spectral weight in the cuprates: role of electron correlations. Phys. Rev. Lett. 95, 097002 (2005)

    Article  ADS  Google Scholar 

  166. D. Nicoletti, O. Limaj, P. Calvani, G. Rohringer, A. Toschi, G. Sangiovanni, M. Capone, K. Held, S. Ono, Y. Ando, S. Lupi, High-temperature optical spectral weight and Fermi-liquid renormalization in bi-based cuprate superconductors. Phys. Rev. Lett. 105, 077002 (2010)

    Article  ADS  Google Scholar 

  167. E. van Heumen, R. Lortz, A.B. Kuzmenko, F. Carbone, D. van der Marel, X. Zhao, G. Yu, Y. Cho, N. Barisic, M. Greven, C.C. Homes, S.V. Dordevic, Optical and thermodynamic properties of the high-temperature superconductor \({\rm {Hg}}{{\rm {Ba}}}_{2}{\rm {Cu}}{{\rm {O}}}_{4+\delta }\). Phys. Rev. B 75, 054522 (2007)

    Google Scholar 

  168. L. Ortenzi, E. Cappelluti, L. Benfatto, L. Pietronero, Fermi-surface shrinking and interband coupling in iron-based pnictides. Phys. Rev. Lett. 103, 046404 (2009)

    Article  ADS  Google Scholar 

  169. L. Benfatto, E. Cappelluti, Effects of the Fermi-surface shrinking on the optical sum rule in pnictides. Phys. Rev. B 83, 104516 (2011)

    Article  ADS  Google Scholar 

  170. X.-Y. Zhu, Q. Yang, M. Muntwiler, Charge-transfer excitons at organic semiconductor surfaces and interfaces. Acc. Chem. Res. 42(11), 1779–1787 (2009)

    Article  Google Scholar 

  171. D.S. Ellis, J.P. Hill, S. Wakimoto, R.J. Birgeneau, D. Casa, T. Gog, Y.-J. Kim, Charge-transfer exciton in La\(_2\)CuO\(_4\) probed with resonant inelastic x-ray scattering. Phys. Rev. B 77(6), 060501 (2008)

    Article  ADS  Google Scholar 

  172. E. Collart, A. Shukla, J.P. Rueff, P. Leininger, H. Ishii, I. Jarrige, Y.Q. Cai, S.-W. Cheong, G. Dhalenne, Localized and delocalized excitons: resonant inelastic x-ray scattering in La\(_{2-x}\)Sr\(_x\)NiO\(_4\) and La\(_{2-x}\)Sr\(_x\)CuO\(_4\). Phys. Rev. Lett. 96(15), 157004 (2006)

    Article  ADS  Google Scholar 

  173. E.E. Salpeter, H.A. Bethe, A relativistic equation for bound-state problems. Phys. Rev. 84(6), 1232 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  174. L.I. Bendavid, E.A. Carter, Status in calculating electronic excited states in transition metal oxides from first principles. in First Principles Approaches to Spectroscopic Properties of Complex Materials (Springer, 2014), pp. 47–98

    Google Scholar 

  175. H. Haug, S. Schmitt-Rink, Basic mechanisms of the optical nonlinearities of semiconductors near the band edge. JOSA B 2(7), 1135–1142 (1985)

    Article  ADS  Google Scholar 

  176. S. Schmitt-Rink, D.S. Chemla, D.A.B. Miller, Linear and nonlinear optical properties of semiconductor quantum wells. Adv. Phys. 38(2), 89–188 (1989)

    Article  ADS  Google Scholar 

  177. J.T. Devreese, S.N. Klimin, J.L.M. van Mechelen, D. van der Marel, Many-body large polaron optical conductivity in SrTi\(_{1-x}\)Nb\(_x\)O\(_3\). Phys. Rev. B 81(12), 125119 (2010)

    Article  ADS  Google Scholar 

  178. M. Rössle, C.N. Wang, P. Marsik, M. Yazdi-Rizi, K.W. Kim, A. Dubroka, I. Marozau, C.W. Schneider, J. Humlíček, D. Baeriswyl, Optical probe of ferroelectric order in bulk and thin-film perovskite titanates. Phys. Rev. B 88(10), 104110 (2013)

    Article  ADS  Google Scholar 

  179. Y.P. Varshni, Temperature dependence of the energy gap in semiconductors. Physica 34(1), 149–154 (1967)

    Article  ADS  Google Scholar 

  180. C. Keffer, T.M. Hayes, A. Bienenstock, PbTe Debye-Waller factors and band-gap temperature dependence. Phys. Rev. Lett. 21(25), 1676 (1968)

    Article  ADS  Google Scholar 

  181. L. Yu, D. Munzar, A.V. Boris, P. Yordanov, J. Chaloupka, T. Wolf, C.T. Lin, B. Keimer, C. Bernhard, Evidence for two separate energy gaps in underdoped high-temperature cuprate superconductors from broadband infrared ellipsometry. Phys. Rev. Lett. 100(17), 177004 (2008)

    Article  ADS  Google Scholar 

  182. I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases. Rev. Mod. Phys. 80(3), 885 (2008)

    Article  ADS  Google Scholar 

  183. M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauss, C. Gross, E. Demler, S. Kuhr, I. Bloch, The Higgs amplitude mode at the two-dimensional superfluid/Mott insulator transition. Nature 487(7408), 454–458 (2012)

    Article  ADS  Google Scholar 

  184. C.A.D. Roeser, M. Kandyla, A. Mendioroz, E. Mazur, Optical control of coherent lattice vibrations in tellurium. Phys. Rev. B 70(21), 212302 (2004)

    Article  ADS  Google Scholar 

  185. D. Mihailovic, D. Dvorsek, V.V. Kabanov, J. Demsar, L. Forró, H. Berger, Femtosecond data storage, processing, and search using collective excitations of a macroscopic quantum state. Appl. Phys. Lett. 80(5), 871–873 (2002)

    Article  ADS  Google Scholar 

  186. D. Fausti, R.I. Tobey, N. Dean, S. Kaiser, A. Dienst, M.C. Hoffmann, S. Pyon, T. Takayama, H. Takagi, A. Cavalleri, Light-induced superconductivity in a stripe-ordered cuprate. Science 331(6014), 189–191 (2011)

    Article  ADS  Google Scholar 

  187. W. Hu, S. Kaiser, D. Nicoletti, C.R Hunt, I.a Gierz, M.C. Hoffmann, M. Le Tacon, T. Loew, B. Keimer, A. Cavalleri. Optically enhanced coherent transport in YBa\(_2\)Cu\(_3\)O\(_{6.5}\) by ultrafast redistribution of interlayer coupling. Nat. Mat., 13(7):705–711 (2014)

    Google Scholar 

  188. R. Mankowsky, A. Subedi, M. Först, S.O. Mariager, M. Chollet, H.T. Lemke, J.S. Robinson, J.M. Glownia, M.P. Minitti, A. Frano et al., Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa\(_2\)Cu\(_3\)O\(_{6.5}\). Nature 516(7529), 71–73 (2014)

    Article  ADS  Google Scholar 

  189. M. Rini, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R.W. Schoenlein, A. Cavalleri, Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449(7158), 72–74 (2007)

    Article  ADS  Google Scholar 

  190. R.I. Tobey, D. Prabhakaran, A.T. Boothroyd, A. Cavalleri, Ultrafast electronic phase transition in La\(_{1/2}\)Sr\(_{3/2}\)MnO\(_4\) by coherent vibrational excitation: evidence for nonthermal melting of orbital order. Phys. Rev. Lett. 101(19), 197404 (2008)

    Article  ADS  Google Scholar 

  191. A. Subedi, A. Cavalleri, A. Georges, Theory of nonlinear phononics for coherent light control of solids. Phys. Rev. B 89(22), 220301 (2014)

    Article  ADS  Google Scholar 

  192. A. Dienst, E. Casandruc, D. Fausti, L. Zhang, M. Eckstein, M. Hoffmann, V. Khanna, N. Dean, M. Gensch, S. Winnerl et al., Optical excitation of Josephson plasma solitons in a cuprate superconductor. Nat. Mat. 12(6), 535–541 (2013)

    Article  Google Scholar 

  193. T. Kubacka, J.A. Johnson, M.C. Hoffmann, C. Vicario, S. De Jong, P. Beaud, S. Grübel, S.-W. Huang, L. Huber, L. Patthey et al., Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science 343(6177), 1333–1336 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Baldini .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baldini, E. (2018). Strong Interactions and Correlations. In: Nonequilibrium Dynamics of Collective Excitations in Quantum Materials. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-77498-5_1

Download citation

Publish with us

Policies and ethics