Skip to main content

Multipole Approach for Homogenization of Metamaterials: “Quantum” Metamaterials

  • Chapter
  • First Online:
Optical Metamaterials: Qualitative Models

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 211))

Abstract

Before discussing the problems of coupled dynamics of the classical and quantum objects, it is worth to make several remarks about compatibility of quantum mechanics and ME. Surprisingly, they are not compatible. Reminding, ME have been elaborated in the frame of the classical dynamics for the charges interacting with the fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.D. Landau, E.L. Lifshitz, Field Theory, 2nd edn. (Pergamon Press, New York, 1960)

    Google Scholar 

  2. A. Yariv, Quantum Electronics, 2nd edn. (Wiley, London, 1975)

    Google Scholar 

  3. M. Noginov, G. Zhu, A. Belgrave, R. Bakker, V. Shalaev, E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, Demonstration of a spaser-based nanolaser. Nature 460, 1110 (2009)

    Article  CAS  Google Scholar 

  4. R. Oulton, V. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep subwavelength scale. Nature 461, 629 (2009)

    Article  CAS  Google Scholar 

  5. K. Tanaka, E. Plum, J.Y. Ou, T. Uchino, N. Zheludev, Multi-fold enhancement of quantum dot luminescence in a plasmonic metamaterial. PRL 105, 227403 (2010)

    Article  CAS  Google Scholar 

  6. A. Nikolaenko, F. Angelis, S. Boden, N. Papasimakis, P. Ashburn, E. Fabrizio, N. Zheludev, Carbon nanotubes in a photonic metamaterials. PRL 104, 153902 (2010)

    Article  Google Scholar 

  7. J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, T. Pertsch, Multipole approach to metamaterials. Phys. Rev. B 78, 043811 (2008)

    Article  Google Scholar 

  8. J. Gersten, A. Nitzan, Spectroscopic properties of molecules interacting with small dielectric particles. J. Chem. Phys. 75(3), 1139 (1981)

    Article  CAS  Google Scholar 

  9. N. Liver, A. Nitzan, K. Freed, Radiative and nonradiative decay rates of molecules absorbed on clusters of small dielectric particles. J. Chem. Phys. 82(8), 3831 (1985)

    Article  CAS  Google Scholar 

  10. S. Vukovic, S. Corni, B. Mennucci, Fluorescence enhancement of chromophores close to metal nanoparticles. Optimal setup revealed by polarizable continuum model. J. Phys. Chem. C 113, 121 (2009)

    Article  CAS  Google Scholar 

  11. S. Morton, L. Jensen, A discrete interaction model/quantum mechanical method for describing response properties of molecules absorbed on metal nanoparticles. J. Chem. Phys. 133, 074103 (2010)

    Article  Google Scholar 

  12. A. Gonzales, S. Corni, B. Mennucci, Surface enhanced fluorescence within a metal nanoparticle array: the role of solvent and Plasmon couplings. J. Phys. Chem. C 115, 5450 (2011)

    Article  Google Scholar 

  13. V.M. Fain, Quantum Radio Physics, Vol. 1: Photons and Nonlinear Media. Sovetskoe Radio (1972) (in Russian)

    Google Scholar 

  14. A.S. Chirkin, A.V. Chipouline, Generalized expression for the natural width of the radiation spectrum of quantum oscillators. JETP Lett. 93, 114 (2011)

    Article  CAS  Google Scholar 

  15. A.F. Koenderink, On the use of Purcell factors for plasmon antennas. Opt. Lett. 35, 4208 (2010)

    Article  CAS  Google Scholar 

  16. A. Chipouline, C. Simovski, S. Tretyakov, Basics of averaging of the Maxwell equations for bulk materials. Metamaterials 6, 77 (2012)

    Article  Google Scholar 

  17. A. Chipouline, V. Fedotov, Towards quantum magnetic metmaterials, in Proceedings Nanometa, 2011, THU4s.3 (96), 2011

    Google Scholar 

  18. G. Oelsner, S.H.W. van der Ploeg, P. Macha, U. Hübner, D. Born, S. Anders, E. Il’ichev, H.-G. Meyer, M. Grajcar, S. Wünsch, M. Siegel, A. Omelyanchouk, O. Astafiev, Weak continuous monitoring of a flux qubit using coplanar waveguide resonator. Phys. Rev. B 81, 172505 (2010)

    Article  Google Scholar 

  19. Y. Greenberg, A. Izmalkov, M. Grajcar, E. Il’ichev, H.-G. Meyer, M.H.S. Amin, A.-M. van den Brink, Low frequency characterization of quantum tunneling in flux qubits. Phys. Rev. B 66, 214525 (2002)

    Article  Google Scholar 

  20. N. Zheludev, S. Prosvirin, N. Papasimakis, V. Fedotov, Lasing spaser. Nat. Photonics 2, 351 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadi Chipouline .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chipouline, A., Küppers, F. (2018). Multipole Approach for Homogenization of Metamaterials: “Quantum” Metamaterials. In: Optical Metamaterials: Qualitative Models. Springer Series in Optical Sciences, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-77520-3_9

Download citation

Publish with us

Policies and ethics