Skip to main content

Innate Immunity in Inflammation

  • Chapter
  • First Online:
Immunopharmacology and Inflammation

Abstract

A fine balance between prompt response to pathogens and avoidance of unregulated inflammation, as well as that between protection and self-damage drives the complexity of the immune system, at the same time pointing out the challenge for effective and safe immunopharmacological intervention. A wide variety of clinically relevant drugs are currently used in the treatment of human inflammatory and immune-system associated disorders. Classical therapeutic approaches are now integrated with emerging strategies that largely derive from advances in signalling and regulatory networks and the pathological consequences of their dysregulation in the field of innate immunity. This chapter provides an account of: (i) the interplay between innate immunity and inflammation; (ii) main immune signalling molecules in inflammation including cytokines, prostanoids and cancer-related immune response, and the main aspects of pharmacological control thereof; and (iii) emerging options for therapeutic interventions on cells of innate immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.guidetoimmunopharmacology.org/GRAC/LigandListForward. Accessed Sept 2017

  2. Tiligada E, Ishii M, Riccardi C, Spedding M, Simon HU, Teixeira MM, Cuervo ML, Holgate ST, Levi-Schaffer F (2015) The expanding role of immunopharmacology: IUPHAR review 16. Br J Pharmacol 172:4217–4227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ishii M (2017) Immunology proves a great success for treating systemic autoimmune diseases – a perspective on immunopharmacology: IUPHAR review 23. Br J Pharmacol 174:1875–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481:278–286

    Article  CAS  PubMed  Google Scholar 

  5. Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16:407–420

    Article  CAS  Google Scholar 

  6. Cook DN, Pisetsky DS, Schwartz DA (2004) Toll-like receptors in the pathogenesis of human disease. Nat Immunol 5:975–979

    Article  CAS  PubMed  Google Scholar 

  7. Vasselon T, Detmers PA (2002) Toll receptors: a central element in innate immune responses. Infect Immun 70:1033–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sheedy FJ, Grebe A, Rayner KJ, Kalantari P, Ramkhelawon B, Carpenter SB, Becker CE, Ediriweera HN, Mullick AE, Golenbock DT, Stuart LM, Latz E, Fitzgerald KA, Moore KJ (2013) CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 14:812–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328:228–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kortylewski M, Moreira D (2017) Myeloid cells as a target for oligonucleotide therapeutics: turning obstacles into opportunities. Cancer Immunol Immunother 66:979–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3:196–200

    Article  CAS  PubMed  Google Scholar 

  12. Lamphier M, Zheng W, Latz E, Spyvee M, Hansen H, Rose J, Genest M, Yang H, Shaffer C, Zhao Y, Shen Y, Liu C, Liu D, Mempel TR, Rowbottom C, Chow J, Twine NC, Yu M, Gusovsky F, Ishizaka ST (2014) Novel small molecule inhibitors of TLR7 andTLR9: mechanism of action and efficacy in vivo. Mol Pharmacol 85:429–440

    Article  CAS  PubMed  Google Scholar 

  13. Moilanen E (2014) Two faces of inflammation: an immunopharmacological view. Basic Clin Pharmacol Toxicol 114:2–6

    Article  CAS  PubMed  Google Scholar 

  14. Brenner D, Blaser H, Mak TW (2015) Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol 15:362–374

    Article  CAS  PubMed  Google Scholar 

  15. Feldmann M (2002) Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol 2:364–371

    Article  CAS  PubMed  Google Scholar 

  16. Sedger LM, McDermott MF (2014) TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants – past, present and future. Cytokine Growth Factor Rev 25:453–472

    Article  CAS  PubMed  Google Scholar 

  17. Dinarello CA, Simon A, van der Meer JW (2012) Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov 11:633–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maini RN (2005) The 2005 international symposium on advances in targeted therapies: what have we learned in the 2000s and where are we going? Ann Rheum Dis 64(Suppl 4):106–108

    Google Scholar 

  19. Walsh G (2004) Second-generation biopharma-ceuticals. Eur J Pharm Biopharm 58:185–196

    Article  CAS  PubMed  Google Scholar 

  20. Kelly A, Houston SA, Sherwood E, Casulli J, Travis MA (2017) Regulation of innate and adaptive immunity by TGFβ. Adv Immunol 134:137–233

    Article  PubMed  Google Scholar 

  21. Cignarella A (2011) Targeting interleukin-1ß hampers atherosclerosis progression – is there great promise? Atherosclerosis 217:64–66

    Article  CAS  PubMed  Google Scholar 

  22. Ridker PM (2014) Targeting inflammatory pathways for the treatment of cardiovascular disease. Eur Heart J 35:540–543

    Article  PubMed  Google Scholar 

  23. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ, CANTOS Trial Group (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131

    Article  CAS  PubMed  Google Scholar 

  24. Ridker PM, MacFadyen JG, Thuren T, Everett BM, Libby P, Glynn RJ, CANTOS Trial Group (2017) Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390:1833–1842 

    Google Scholar 

  25. Bellinger AM, Arteaga CL, Force T, Humphreys BD, Demetri GD, Druker BJ, Moslehi JJ (2015) Cardio-oncology: how new targeted cancer therapies and precision medicine can inform cardiovascular discovery. Circulation 132:2248–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sung S, Yang H, Uryu K, Lee EB, Zhao L, Shineman D, Trojanowski JQ, Lee VM, Praticò D (2004) Modulation of nuclear factor-κB activity by indomethacin influences Aβ levels but not Aβ precursor protein metabolism in a model of Alzheimer’s disease. Am J Pathol 165:2197–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jaeschke H, Williams CD, Ramachandran A, Bajt ML (2012) Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int 32:8–20

    Article  CAS  PubMed  Google Scholar 

  28. Patrono C, Baigent C (2017) Coxibs, traditional NSAIDs, and cardiovascular safety post-PRECISION: what we thought we knew then and what we think we know now. Clin Pharmacol Ther 102:238–245

    Article  CAS  PubMed  Google Scholar 

  29. Di Gennaro A, Haeggström JZ (2012) The leukotrienes: immune-modulating lipid mediators of disease. Adv Immunol 116:51–92

    Article  CAS  PubMed  Google Scholar 

  30. Matsuse H, Kohno S (2014) Leukotriene receptor antagonists pranlukast and montelukast for treating asthma. Expert Opin Pharmacother 15:353–363

    Article  CAS  PubMed  Google Scholar 

  31. Jutel M, Akdis M, Akdis CA (2009) Histamine, histamine receptors and their role in immune pathology. Clin Exp Allergy 39:1786–1800

    Article  CAS  PubMed  Google Scholar 

  32. Tiligada E, Zampeli E, Sander K, Stark H (2009) Histamine H3 and H4 receptors as novel drug targets. Expert Opin Investig Drugs 18:1519–1531

    Article  CAS  PubMed  Google Scholar 

  33. Kollb-Sielecka M, Demolis P, Emmerich J, Markey G, Salmonson T, Haas M (2017) The European Medicines Agency review of pitolisant for treatment of narcolepsy: summary of the scientific assessment by the Committee for Medicinal Products for Human Use. Sleep Med 33:125–129

    Article  PubMed  Google Scholar 

  34. https://clinicaltrials.gov/ct2/show/NCT02424253. Accessed Oct 2017

  35. Mahoney KM, Rennert PD, Freeman GJ (2015) Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 14:561–584

    Article  CAS  PubMed  Google Scholar 

  36. Pico de Coaña Y, Choudhury A, Kiessling R (2015) Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system. Trends Mol Med 21:482–491

    Article  CAS  PubMed  Google Scholar 

  37. Hoos A (2016) Development of immuno-oncology drugs – from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov 15:235–247

    Article  CAS  PubMed  Google Scholar 

  38. Sheng J, Srivastava S, Sanghavi K, Zhen L, Schmidt BJ, Bello A, Gupta M (2017) Clinical pharmacology considerations for the development of immune checkpoint inhibitors. J Clin Pharmacol 57(S10):S26–S42

    Article  CAS  PubMed  Google Scholar 

  39. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbé C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sundar R, Cho BC, Brahmer JR, Soo RA (2015) Nivolumab in NSCLC: latest evidence and clinical potential. Ther Adv Med Oncol 7:85–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang C, Thudium KB, Han M, Wang XT, Huang H, Feingersh D, Garcia C, Wu Y, Kuhne M, Srinivasan M, Singh S, Wong S, Garner N, Leblanc H, Bunch RT, Blanset D, Selby MJ, Korman AJ (2014) In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol Res 2:846–856

    Article  CAS  PubMed  Google Scholar 

  42. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn MJ, Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L, KEYNOTE-001 Investigators (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–2028

    Article  Google Scholar 

  43. Khoja L, Butler MO, Kang SP, Ebbinghaus S, Joshua AM (2015) Pembrolizumab. J Immunother Cancer 3:36

    Article  PubMed  PubMed Central  Google Scholar 

  44. Deng R, Bumbaca D, Pastuskovas CV, Boswell CA, West D, Cowan KJ, Chiu H, McBride J, Johnson C, Xin Y, Koeppen H, Leabman M, Iyer S (2016) Preclinical pharmacokinetics, pharmacodynamics, tissue distribution, and tumor penetration of anti-PD-L1 monoclonal antibody, an immune checkpoint inhibitor. MAbs 8:593–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Inman BA, Longo TA, Ramalingam S, Harrison MR (2017) Atezolizumab: a PD-L1-blocking antibody for bladder cancer. Clin Cancer Res 23:1886–1890

    Article  CAS  PubMed  Google Scholar 

  46. Zheng Y, Yang Y, Wu S, Zhu Y, Tang X, Liu X (2016) Combining MPDL3280A with adoptive cell immunotherapy exerts better antitumor effects against cervical cancer. Bioengineered 8:367–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pitt JM, André F, Amigorena S, Soria JC, Eggermont A, Kroemer G, Zitvogel L (2016) Dendritic cell-derived exosomes for cancer therapy. J Clin Invest 126:1224–1232

    Article  PubMed  PubMed Central  Google Scholar 

  48. Foks AC, Kuiper J (2017) Immune checkpoint proteins: exploring their therapeutic potential to regulate atherosclerosis. Br J Pharmacol 174:3940–3955

    Article  CAS  PubMed  Google Scholar 

  49. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Krysko DV, Kaczmarek A, Krysko O, Heyndrickx L, Woznicki J, Bogaert P, Cauwels A, Takahashi N, Magez S, Bachert C, Vandenabeele P (2011) TLR-2 and TLR-9 are sensors of apoptosis in a mouse model of doxorubicin-induced acute inflammation. Cell Death Differ 18:1316–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A, Maini AA, Bigley V, Flavell RA, Gilroy DW, Asquith B, Macallan D, Yona S (2017) The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med 214:1913–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Weber C, Shantsila E, Hristov M, Caligiuri G, Guzik T, Heine GH, Hoefer IE, Monaco C, Peter K, Rainger E, Siegbahn A, Steffens S, Wojta J, Lip GY (2016) Role and analysis of monocyte subsets in cardiovascular disease – joint consensus document of the European Society of Cardiology (ESC) Working Groups “Atherosclerosis & Vascular Biology” and “Thrombosis”. Thromb Haemost 116:626–637

    Article  PubMed  Google Scholar 

  53. Zawada AM, Rogacev KS, Rotter B, Winter P, Marell RR, Fliser D, Heine GH (2011) SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood 118:e50–e61

    Article  CAS  PubMed  Google Scholar 

  54. Cappellari R, D’Anna M, Bonora BM, Rigato M, Cignarella A, Avogaro A, Fadini GP (2017) Shift of monocyte subsets along their continuum predicts cardiovascular outcomes. Atherosclerosis 266:95–102

    Article  CAS  PubMed  Google Scholar 

  55. Gratchev A, Sobenin I, Orekhov A, Kzhyshkowska J (2012) Monocytes as a diagnostic marker of cardiovascular diseases. Immunobiology 217:476–482

    Article  CAS  PubMed  Google Scholar 

  56. Berg KE, Ljungcrantz I, Andersson L, Bryngelsson C, Hedblad B, Fredrikson GN, Nilsson J, Björkbacka H (2012) Elevated CD14++CD16 monocytes predict cardiovascular events. Circ Cardiovasc Genet 5:122–131

    Article  CAS  PubMed  Google Scholar 

  57. Ehrchen J, Steinmüller L, Barczyk K, Tenbrock K, Nacken W, Eisenacher M, Nordhues U, Sorg C, Sunderkötter C, Roth J (2007) Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes. Blood 109:1265–1274

    Article  CAS  PubMed  Google Scholar 

  58. Vallelian F, Schaer CA, Kaempfer T, Gehrig P, Duerst E, Schoedon G, Schaer DJ (2010) Glucocorticoid treatment skews human monocyte differentiation into a hemoglobin-clearance phenotype with enhanced heme-iron recycling and antioxidant capacity. Blood 116:5347–5356

    Article  CAS  PubMed  Google Scholar 

  59. Hotamisligil GS (2017) Inflammation, metaflammation and immunometabolic disorders. Nature 542:177–185

    Article  CAS  Google Scholar 

  60. O’Neill LA, Kishton RJ, Rathmell J (2016) A guide to immunometabolism for immunologists. Nat Rev Immunol 16:553–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. O’Neill LA, Pearce EJ (2016) Immunometabolism governs dendritic cell and macrophage function. J Exp Med 213:15–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Thwe PM, Pelgrom L, Cooper R, Beauchamp S, Reisz JA, D’Alessandro A, Everts B, Amiel E (2017) Cell-intrinsic glycogen metabolism supports early glycolytic reprogramming required for dendritic cell immune responses. Cell Metab 26:558–567.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Leite F, Lima M, Marino F, Cosentino M, Ribeiro L (2016) Dopaminergic receptors and tyrosine hydroxylase expression in peripheral blood mononuclear cells: a distinct pattern in central obesity. PLoS One 11:e0147483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Medzhitov R, Horng T (2009) Transcriptional control of the inflammatory response. Nat Rev Immunol 9:692–703

    Article  CAS  PubMed  Google Scholar 

  65. Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22:231–237

    Article  CAS  Google Scholar 

  66. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, Balkwill FR (2008) “Re-educating” tumor-associated macrophages by targeting NF-κB. J Exp Med 205:1261–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    Article  CAS  PubMed  Google Scholar 

  69. Tedesco S, Bolego C, Toniolo A, Nassi A, Fadini GP, Locati M, Cignarella A (2015) Phenotypic activation and pharmacological outcomes of spontaneously differentiated human monocyte-derived macrophages. Immunobiology 220:545–554

    Article  CAS  PubMed  Google Scholar 

  70. Diao W, Lu L, Li S, Chen J, Zen K, Li L (2017) MicroRNA-125b-5p modulates the inflammatory state of macrophages via targeting B7-H4. Biochem Biophys Res Commun 491:912–918

    Article  CAS  PubMed  Google Scholar 

  71. Jiang K, Weaver JD, Li Y, Chen X, Liang J, Stabler CL (2017) Local release of dexamethasone from macroporous scaffolds accelerates islet transplant engraftment by promotion of anti-inflammatory M2 macrophages. Biomaterials 114:71–81

    Article  CAS  PubMed  Google Scholar 

  72. Bolego C, Cignarella A, Staels B, Chinetti-Gbaguidi G (2013) Macrophage function and polarization in cardiovascular disease – a role of estrogen signaling? Arterioscler Thromb Vasc Biol 33:1127–1134

    Article  CAS  PubMed  Google Scholar 

  73. Toniolo A, Fadini GP, Tedesco S, Cappellari R, Vegeto E, Maggi A, Avogaro A, Bolego C, Cignarella A (2015) Alternative activation of human macrophages is rescued by estrogen treatment in vitro and impaired by menopausal status. J Clin Endocrinol Metab 100:E50–E58

    Article  CAS  PubMed  Google Scholar 

  74. Mercalli A, Calavita I, Dugnani E, Citro A, Cantarelli E, Nano R, Melzi R, Maffi P, Secchi A, Sordi V, Piemonti L (2013) Rapamycin unbalances the polarization of human macrophages to M1. Immunology 140:179–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kratz M, Coats BR, Hisert KB, Hagman D, Mutskov V, Peris E, Schoenfelt KQ, Kuzma JN, Larson I, Billing PS, Landerholm RW, Crouthamel M, Gozal D, Hwang S, Singh PK, Becker L (2014) Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab 20:614–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stienstra R, Duval C, Keshtkar S, van der Laak J, Kersten S, Müller M (2008) Peroxisome proliferator-activated receptor γ activation promotes infiltration of alternatively activated macrophages into adipose tissue. J Biol Chem 283:22620–22627

    Article  CAS  PubMed  Google Scholar 

  77. van der Meij E, Koning GG, Vriens PW, Peeters MF, Meijer CA, Kortekaas KE, Dalman RL (2013) A clinical evaluation of statin pleiotropy: statins selectively and dose-dependently reduce vascular inflammation. PLoS One 8:e53882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pello OM, Silvestre C, De Pizzol M, Andrés V (2011) A glimpse on the phenomenon of macrophage polarization during atherosclerosis. Immunobiology 216:1172–1176

    Article  CAS  PubMed  Google Scholar 

  79. Wu J, Saleh MA, Kirabo A, Itani HA, Montaniel KR, Xiao L, Chen W, Mernaugh RL, Cai H, Bernstein KE, Goronzy JJ, Weyand CM, Curci JA, Barbaro NR, Moreno H, Davies SS, Roberts LJ 2nd, Madhur MS, Harrison DG (2016) Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest 126:50–67

    Article  PubMed  Google Scholar 

  80. Bernstein KE, Khan Z, Giani JF, Zhao T, Eriguchi M, Bernstein EA, Gonzalez-Villalobos RA, Shen XZ (2016) Overexpression of angiotensin-converting enzyme in myelomonocytic cells enhances the immune response. F1000Res 5. pii: F1000 Faculty Rev-393

    Google Scholar 

  81. Go AS, Bauman MA, Coleman King SM, Fonarow GC, Lawrence W, Williams KA, Sanchez E, American Heart Association, American College of Cardiology, Centers for Disease Control and Prevention (2014) An effective approach to high blood pressure control: a science advisory from the American Heart Association, the American College of Cardiology, and the Centers for Disease Control and Prevention. Hypertension 63:878–885

    Article  CAS  PubMed  Google Scholar 

  82. The Heart Outcomes Prevention Evaluation Study Investigators (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med 342:145–153

    Article  Google Scholar 

  83. Romero CA, Orias M, Weir MR (2015) Novel RAAS agonists and antagonists: clinical applications and controversies. Nat Rev Endocrinol 11:242–252

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cignarella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cignarella, A., Bolego, C. (2018). Innate Immunity in Inflammation. In: Riccardi, C., Levi-Schaffer, F., Tiligada, E. (eds) Immunopharmacology and Inflammation. Springer, Cham. https://doi.org/10.1007/978-3-319-77658-3_7

Download citation

Publish with us

Policies and ethics