Skip to main content

Multiphase Flows with Moving Interfaces and Contact Line—Balance Laws

  • Chapter
  • First Online:
Fluid and Thermodynamics

Abstract

A general continuum description for thermodynamic immiscible multiphase flows is presented with intersecting dividing surfaces, and three-phase common contact line, taking the contribution of the excess surface and line thermodynamic quantities into account. Starting with the standard postulates of continuum mechanics and the general global balance statement for an arbitrary physical quantity in a physical domain of three bulk phases including singular material or nonmaterial phase interfaces and a three-phase contact line, the local conservation equations on the phase interfaces and at the contact line are derived, in addition to the classical local balance equations for each bulk phase. Then, these general additional interface and line balance laws are specified for excess surface and line physical quantities, e.g., excess mass, momentum, angular momentum, energy, and entropy, respectively. Some simplified forms of these balance laws are also presented and discussed. In particular, for the massless phase interfaces and contact line, these balance laws reduce to the well-known jump conditions.

This chapter heavily draws from Wang and Oberlack (2011) [56].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term epitaxy refers to the growth of a crystalline layer above (epi) the surface of a crystalline substrate, whose crystallographic orientation imposes a crystalline order (taxis) onto the thin film.

  2. 2.

    It is tacitly assumed that the flux depends only on the outer normal vector at the surface points and not on differential geometric properties of the surface such as mean or Gauss ian curvature. This assumption has first been spelled out by Cauchy and is referred to as the Cauchy assumption.

  3. 3.

    The derivation of the result (27.11) requires a number of clarifying remarks to put it into the proper perspectives. The result was obtained by applying the balance law for a physical quantity to a material tetrahedronal volume with sharp edges and points for which unit normal vectors cannot uniquely be defined. Thus, to make the above argument mathematically “clean” the tetrahedron must be smoothed out such that the edges and vertices become “diffuse” with uniquely defined normal vectors. This smoothing can formally be done and the limit to a tetrahedron with sharp edges and vertices can be performed such that in the limit (27.11) is obtained. The assumption that is needed is that the flux \(\varvec{\phi }\) is nontrivially defined with respect to surface measure, but that there is no specific flux quantity defined along the edges or at the vertices.

    A historical account on Cauchy ’s Lemma is given by Truesdell and Toupin [52], Sect. 203, more general treatments, in which nontrivial edge fluxes and vertex fluxes are allowed for, are given by Noll [32], Noll and Virga [33] and Dell’Isola and Seppecher [9].

  4. 4.

    For a brief biography of Osborne Reynolds (1842–1912), see Vol. 2 of this treatise [25], Fig. 15.2 on p. 230.

  5. 5.

    For brief biographical sketches of Jean Frédéric Frenet (1816–1900) and Joseph Alfred Serret (1819–1885), see Fig.  27.4 .

  6. 6.

    For a brief biographical sketch of Carlo Giuseppe Matteo Marangoni (1840–1925), see Fig.  27.6 .

  7. 7.

    For a brief biographical sketch of Irving Langmuir (1881–1957), see Fig.  27.7 .

  8. 8.

    For a brief biographical sketch of Thomas Young (1773–1829), see Fig.  27.8 .

  9. 9.

    The derivation of these expressions is not difficult as it follows the procedure already used in simpler situations, but it is a bit long and tedious.

References

  1. Alts, T., Hutter, K.: Continuum description of the dynamics and thermodynamics of phase boundaries between ice and water, part I: surface balance laws and their interpretation in terms of three-dimensional balance laws averaged over the phase change boundary layer. J. Non-Equil. Thermo. 13, 221–257 (1988)

    Google Scholar 

  2. Amirfazli, A., Kwok, D.Y., Gaydos, J., Neumann, A.W.: Line tension measurements through drop size dependence of contact angle. J. Colloid Interface Sci. 205, 1–11 (1998)

    Article  Google Scholar 

  3. Amirfazli, A., Keshavarz, A., Zhang, L., Neumann, A.W.: Determination of line tension for systems near wetting. J. Colloid Interface Sci. 265, 152–160 (2003)

    Article  Google Scholar 

  4. Amirfazli, A., Neumann, A.W.: Status of the three-phase line tension: a review. Adv. Colloid Interface Sci. 110, 121–141 (2004)

    Article  Google Scholar 

  5. Babak, V.G.: Generalised line tension theory revisited. Colloids Surf., A 156, 423–448 (1999)

    Google Scholar 

  6. Bedeaux, D.: Nonequilibrium thermodynamic description of the three-phase contact line. J. Chem. Phys. 120, 3744–3748 (2004)

    Article  Google Scholar 

  7. Bier, M., Chen, W., Gowrishankar, T.R., Astumian, R.D., Lee, R.C.: Resealing dynamics of a cell membrane after electroporation. Phys. Rev. E 66(6), 062905 (2002)

    Google Scholar 

  8. Cermelli, P., Fried, E., Gurtin, M.: Transport relation for surface integrals arising in the formulation of balance laws for evolving fluid interfaces. J. Fluid Mech. 544, 339–351 (2005)

    Article  Google Scholar 

  9. dell’Isola, F., Seppecher, P.: Edge contact forces and quasi-balanced power. Mechanica 32, 33–52 (1997)

    Article  Google Scholar 

  10. Dussaud, A., Vignes-Adler, M.: Wetting transition of n-alkanes on concentrated aqueous salt solutions. Line tension effect. Langmuir 13, 581–589 (1997)

    Article  Google Scholar 

  11. Edwards, D.A., Brenner, H., Wasan, D.T.: Interfacial Transport Processes and Rheology. Butterworth-Heinemann, Boston (1991)

    Google Scholar 

  12. Eggleton, C.D., Stebe, K.J.: An adsorption-desorption controlled surfactant on a deforming droplet. J. Coll. Int. Sci. 208, 68–80 (1998)

    Article  Google Scholar 

  13. Eggleton, C.D., Tsai, T.M., Stebe, K.J.: Tip streaming from a drop in the presence of surfactants. Phys. Rev. Lett. 87, 048302 (2001)

    Article  Google Scholar 

  14. Gatignol, R., Prud’homme, R.: Mechanical and Thermodynamical Modeling of Fluid Interfaces. World Scientific, Singapore (2001)

    Book  Google Scholar 

  15. Getta, T., Dietrich, S.: Line tension between fluid phases and a substrate. Phys. Rev. E 57, 655–671 (1998)

    Article  Google Scholar 

  16. Gokhale, S.J., Plawsky, J.L., Wayner Jr., P.C.: Effect of interfacial phenomena on dewetting in dropwise condensation. Adv. Colloid Interface Sci. 104, 175–190 (2003)

    Article  Google Scholar 

  17. Gordon, J.E.: Structures or Why Things Don’t Fall Down. Penguin Books, London (1978)

    Book  Google Scholar 

  18. Graham, C., Griffith, P.: Drop size distributions and heat transfer in dropwise condensation. Int. J. Heat Mass Transfer. 16, 337–346 (1973)

    Article  Google Scholar 

  19. Greve, R.: Kontinuumsmechanik – Ein Grundkurs, p. 302. Springer, Berlin (2003)

    Google Scholar 

  20. Gu, Y.: Drop size dependence of contact angles of oil drops on a solid surface in water. J. Colloids Surf. A 181, 215–224 (2001)

    Article  Google Scholar 

  21. Gurtin, M.E., Struthers, A., Williams, W.O.: A transport theorem for moving interfaces. Q. Appl. Maths 47, 773–777 (1989)

    Article  Google Scholar 

  22. Gurtin, M.E.: On thermomechanical laws for the motion of a phase interface. J. App. Math. Phys. 42, 370–388 (1991)

    Google Scholar 

  23. Haupt, P.: Continuum Mechanics and Theory of Materials, p. 643. Springer, Berlin (2002)

    Google Scholar 

  24. Hutter, K., Jöhnk, K.: Continuum Methods of Physical Modeling, p. 635. Springer, Berlin (2004)

    Google Scholar 

  25. Hutter, K., Wang, Y.: Fluid and Thermodynamics. Volume II: Advanced Fluid Mechanics and Thermodynamic Fundamentals, p. 633. Springer, Berlin (2016). ISBN: 978-3-319-33635-0

    Google Scholar 

  26. Indekeu, J.O.: Line tension at wetting. J. Mod. Phys., B 8, 309–345 (1994)

    Google Scholar 

  27. Jin, F., Gupta, N.R., Stebe, K.J.: The detachment of a viscous drop in a viscous solution in the presence of a soluble surfactant. Phys. Fluids 18, 022103 (2006)

    Article  Google Scholar 

  28. Levich, V.G.: Physicochemical Hydrodynamics. Prentice Hall, Upper Saddle River (1962)

    Google Scholar 

  29. Marmur, A.: Line tension and the intrinsic contact angle in solid-liquid-fluid systems. J. Colloid Interface Sci. 186, 462–466 (1997)

    Article  Google Scholar 

  30. Moeckel, G.P.: Thermodynamics of an interface. Arch. Ration. Mech. Anal. 57, 255–280 (1975)

    Article  Google Scholar 

  31. Morel, C.: On the surface equations in two-phase flows and reacting single-phase flows. Int. J. Multiphase Flow 33, 1045–1073 (2007)

    Article  Google Scholar 

  32. Noll, W.: The foundation of classical mechanics in the light of recent advances in continuum mechanics. In: Proceedings of the Berkeley Symposium on Aximatic Methods, pp. 226–228. Amsterdam (1959)

    Google Scholar 

  33. Noll, W., Virga, E.G.: On edge interactions and surface tension. Arch. Ration. Mech. Anal. 111(1), 1–31 (1990)

    Article  Google Scholar 

  34. Oliver, J.F., Huh, C., Mason, S.G.: Resistance to spreading of liquids by sharp edges. J. Colloid Interface Sci. 59, 568–581 (1977)

    Article  Google Scholar 

  35. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  Google Scholar 

  36. Otis Jr., D.R., Ingenito, E.P., Kamm, R.D., Johnson, M.: Dynamic surface tension of surfactant TA: experiments and theory. J. Appl. Physiol. 77, 2681–2688 (1994)

    Article  Google Scholar 

  37. Petryk, H., Mroz, Z.: Time derivatives of integrals and functionals defined on varying volume and surface domains. Arch. Mech. 38, 697–724 (1986)

    Google Scholar 

  38. Pompe, T.: Line tension behavior of a first-order wetting system. Phys Rev. Lett. 89(7) Art.No. 076102 (2002)

    Google Scholar 

  39. Qu, W., Li, D.: Line tension of simple liquid-liquid-fluid systems. Colloids Surf, A 156, 123–135 (1999)

    Article  Google Scholar 

  40. Rodrigues, J.F., Saramago, B., Fortes, M.A.: Apparent contact angle and triple-line tension of a soap bubble on a substrate. J. Colloid Interface Sci. 239, 577–580 (2001)

    Article  Google Scholar 

  41. Rusanov, A.I.: Surface thermodynamics revisited. Surf. Sci. Rep. 58, 111–239 (2005)

    Article  Google Scholar 

  42. Sagis, L.M., Slattery, J.C.: Incorporation of line quantities in the continuum description for multiphase, multicomponent bodies with intersecting dividing surfaces. I. Kinematics and conservation principles. J. Colloid Interface Sci. 176, 150–164 (1995)

    Article  Google Scholar 

  43. Shikhmurzaev, Y.D.: The moving contact line on a smooth solid surface. Int. J. Multiphase Flow 19, 589–610 (1993)

    Article  Google Scholar 

  44. Shikhmurzaev, Y.D.: Capillary Flows with Forming Interfaces. Chapman & Hall/CRC, London (2008)

    Google Scholar 

  45. Slattery, J.C., Sagis, L., Oh, E.-S.: Interfacial Transport Phenomena. Springer, New York (2007)

    Google Scholar 

  46. Solomentsev, Y., White, L.R.: Microscopic drop profiles and the origins of line tension. J. Colloid Interface Sci. 218, 122–136 (1999)

    Article  Google Scholar 

  47. Sussman, M., Fatemi, E., Smereka, P., Osher, S.: An improved level set method for incompressible two-phase flows. Comput. Fluids 277, 663–680 (1998)

    Article  Google Scholar 

  48. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146–159 (1994)

    Article  Google Scholar 

  49. Szleifer, I., Widom, B.: Surface tension, line tension, and wetting. Mol. Phys. 75, 925–943 (1992)

    Article  Google Scholar 

  50. Thomas, T.Y.: Extended compatibility conditions for the study of surfaces of discontinuity in continuum mechanics. J. Maths Mech. 6, 311–322 (1957)

    Google Scholar 

  51. Truesdell, C.: A First Course in Rational Continuum Mechanics. Academic Press, New York (1977)

    Google Scholar 

  52. Truesdell, C.A., Toupin, R.A.: The classical field theories. In: Flügge, S (ed.) Encyclopedia of Physics, vol. III/1, pp. 226–793. Springer, Berlin (1957)

    Google Scholar 

  53. Vera-Graziano, R., Muhl, S., Rivera-Torres, F.: The effect of illumination on contact angles of pure water on crystalline silicon. J. Colloid Interface Sci. 170, 591–597 (1995)

    Article  Google Scholar 

  54. Vignes-Adler, M., Brenner, H.: A micromechanical derivation of the dierential equations of interfacial statics. III. Line tension. J. Colloid Interface Sci. 103, 11–44 (1985)

    Article  Google Scholar 

  55. Wallace, J.A., Schürch, S.: Line tension of sessile drops placed on a phospholipid monolayer at the water-fluorocarbon interface. Colloids Surf. 43, 207–221 (1990)

    Article  Google Scholar 

  56. Wang, Y., Oberlack, M.: A thermodynamic model of multiphase flows with moving interfaces and contact line. Continuum Mech. Thermodyn. 23, 409–433 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolumban Hutter .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hutter, K., Wang, Y. (2018). Multiphase Flows with Moving Interfaces and Contact Line—Balance Laws. In: Fluid and Thermodynamics. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-77745-0_27

Download citation

Publish with us

Policies and ethics