Skip to main content

Genetic Testing for Inheritable Cardiac Channelopathies

  • Chapter
  • First Online:
Channelopathies in Heart Disease

Part of the book series: Cardiac and Vascular Biology ((Abbreviated title: Card. vasc. biol.,volume 6))

  • 687 Accesses

Abstract

Inheritable cardiac channelopathies (ICC) are defined as primary electrical disorders without identifiable cardiac structural abnormalities and are mostly encountered in young adults (under 40 years). Diagnosis of ICC is often established after the first symptoms such as recurrent palpitations and syncope or more dramatically after unexplained sudden cardiac death (SCD). In this context, familial clinical screening coupled with genetic testing are required to prevent additional (fatal) arrhythmia events in relatives. This review presents an update of the ICC-associated genes and proposes a screening hierarchy according to the phenotype. The impact of the new sequencing technologies on the genetic testing as well as on the patient management will be also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman MJ. Genetic purgatory and the cardiac channelopathies: exposing the variants of uncertain/unknown significance issue. Heart Rhythm. 2015;12:2325–31.

    Article  PubMed  Google Scholar 

  • Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European heart rhythm association (EHRA). Europace. 2011;13:1077–109.

    PubMed  Google Scholar 

  • Akgün M, Bayrak AO, Ozer B, Sağıroğlu MŞ. Privacy preserving processing of genomic data: a survey. J Biomed Inform. 2015;56:103–11.

    Article  PubMed  Google Scholar 

  • Altmann HM, Tester DJ, Will ML, et al. Homozygous/compound heterozygous triadin mutations associated with autosomal-recessive long-QT syndrome and pediatric sudden cardiac arrest: elucidation of the triadin knockout syndrome. Circulation. 2015;131:2051–60.

    Article  CAS  PubMed  Google Scholar 

  • Andorin A, Behr ER, Denjoy I, et al. Impact of clinical and genetic findings on the management of young patients with Brugada syndrome. Heart Rhythm. 2016;13:1274–82.

    Article  PubMed  Google Scholar 

  • Andreasen C, Nielsen JB, Refsgaard L, et al. New population-based exome data are questioning the pathogenicity of previously cardiomyopathy-associated genetic variants. Eur J Hum Genet. 2013;21:918–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anselme F, Moubarak G, Savouré A, et al. Implantable cardioverter-defibrillators in Lamin a/C mutation carriers with cardiac conduction disorders. Heart Rhythm. 2013;10:1492–8.

    Article  PubMed  Google Scholar 

  • Antzelevitch C, Pollevick GD, Cordeiro JM, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115:442–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bagnall RD, Das KJ, Duflou J, Semsarian C. Exome analysis-based molecular autopsy in cases of sudden unexplained death in the young. Heart Rhythm. 2014;11:655–62.

    Article  PubMed  Google Scholar 

  • Barc J, Briec F, Schmitt S, et al. Screening for copy number variation in genes associated with the long QT syndrome: clinical relevance. J Am Coll Cardiol. 2011;57:40–7.

    Article  CAS  PubMed  Google Scholar 

  • Barsheshet A, Goldenberg I, O-Uchi J, et al. Mutations in cytoplasmic loops of the KCNQ1 channel and the risk of life-threatening events: implications for mutation-specific response to β-blocker therapy in type 1 long-QT syndrome. Circulation. 2012;125:1988–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baruteau A-EE, Probst V, Abriel H. Inherited progressive cardiac conduction disorders. Curr Opin Cardiol. 2015;30:33–9.

    Article  PubMed  Google Scholar 

  • Basson CT, Cowley GS, Solomon SD, et al. The clinical and genetic spectrum of the Holt-Oram syndrome (heart-hand syndrome). N Engl J Med. 1994;330:885–91.

    Article  CAS  PubMed  Google Scholar 

  • Bauce B, Nava A, Beffagna G, et al. Multiple mutations in desmosomal proteins encoding genes in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart Rhythm. 2010;7:22–9.

    Article  PubMed  Google Scholar 

  • Behr ER, Dalageorgou C, Christiansen M, et al. Sudden arrhythmic death syndrome: familial evaluation identifies inheritable heart disease in the majority of families. Eur Heart J. 2008;29:1670–80.

    Article  PubMed  Google Scholar 

  • Bellocq C, van Ginneken AC, Bezzina CR, et al. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation. 2004;109:2394–7.

    Article  PubMed  Google Scholar 

  • Bezzina CR, Barc J, Mizusawa Y, et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat Genet. 2013;45:1044–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhonsale A, Groeneweg JA, James CA, et al. Impact of genotype on clinical course in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated mutation carriers. Eur Heart J. 2015;36:847–55.

    Article  CAS  PubMed  Google Scholar 

  • Bhuiyan ZA, van den Berg MP, van Tintelen JP, et al. Expanding spectrum of human RYR2-related disease: new electrocardiographic, structural, and genetic features. Circulation. 2007;116:1569–76.

    Article  PubMed  Google Scholar 

  • Bjerregaard P. Proposed diagnostic criteria for short QT syndrome are badly founded. J Am Coll Cardiol. 2011;58:549–50; author reply 550–1.

    Article  PubMed  Google Scholar 

  • Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol. 1992;20:1391. Available at: PM:1309182

    CAS  PubMed  Google Scholar 

  • Brugada R, Hong K, Dumaine R, et al. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation. 2004;109:30–5.

    Article  CAS  PubMed  Google Scholar 

  • Campbell MJ, Czosek RJ, Hinton RB, Miller EM. Exon 3 deletion of ryanodine receptor causes left ventricular noncompaction, worsening catecholaminergic polymorphic ventricular tachycardia, and sudden cardiac arrest. Am J Med Genet A. 2015;167A:2197–200.

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature. 1998;392:293. Available at: PM:9521325

    Article  CAS  PubMed  Google Scholar 

  • Christiaans I, van Langen IM, Birnie E, Bonsel GJ, Wilde AA, Smets EM. Quality of life and psychological distress in hypertrophic cardiomyopathy mutation carriers: a cross-sectional cohort study. Am J Med Genet A. 2009;149A:602–12.

    Article  PubMed  Google Scholar 

  • Christiansen SL, Hertz CL, Ferrero-Miliani L, et al. Genetic investigation of 100 heart genes in sudden unexplained death victims in a forensic setting. Eur J Hum Genet. 2016;24:1797–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chugh SS, Chung K, Zheng Z-JJ, John B, Titus JL. Cardiac pathologic findings reveal a high rate of sudden cardiac death of undetermined etiology in younger women. Am Heart J. 2003;146:635–9.

    Article  PubMed  Google Scholar 

  • Corrado D, Link MS, Calkins H. Arrhythmogenic right ventricular cardiomyopathy. N Engl J Med. 2017;376:61–72.

    Article  CAS  PubMed  Google Scholar 

  • Crotti L, Spazzolini C, Schwartz PJ, et al. The common long-QT syndrome mutation KCNQ1/A341V causes unusually severe clinical manifestations in patients with different ethnic backgrounds: toward a mutation-specific risk stratification. Circulation. 2007;116:2366–75.

    Article  CAS  PubMed  Google Scholar 

  • Crotti L, Marcou CA, Tester DJ, et al. Spectrum and prevalence of mutations involving BrS1- through BrS12-susceptibility genes in a cohort of unrelated patients referred for Brugada syndrome genetic testing: implications for genetic testing. J Am Coll Cardiol. 2012;60:1410. Available at: PM:22840528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crotti L, Johnson CN, Graf E, et al. Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation. 2013;127:1009–17.

    Article  CAS  PubMed  Google Scholar 

  • Daumy X, Amarouch M-YY, Lindenbaum P, et al. Targeted resequencing identifies TRPM4 as a major gene predisposing to progressive familial heart block type I. Int J Cardiol. 2016;207:349–58.

    Article  PubMed  Google Scholar 

  • Devalla HD, Gélinas R, Aburawi EH, et al. TECRL, a new life-threatening inherited arrhythmia gene associated with overlapping clinical features of both LQTS and CPVT. EMBO Mol Med. 2016;8:1390–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donger C, Denjoy I, Berthet M, et al. KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation. 1997;96:2778–81.

    Article  CAS  PubMed  Google Scholar 

  • Eastaugh LJ, James PA, Phelan DG, Davis AM. Brugada syndrome caused by a large deletion in SCN5A only detected by multiplex ligation-dependent probe amplification. J Cardiovasc Electrophysiol. 2011;22:1073–6.

    Article  PubMed  Google Scholar 

  • Gaita F, Giustetto C, Bianchi F, et al. Short QT syndrome: pharmacological treatment. J Am Coll Cardiol. 2004;43:1494–9.

    Article  CAS  PubMed  Google Scholar 

  • García-Molina E, Lacunza J, Ruiz-Espejo F, et al. A study of the SCN5A gene in a cohort of 76 patients with Brugada syndrome. Clin Genet. 2013;83:530–8.

    Article  PubMed  CAS  Google Scholar 

  • Garg V, Kathiriya IS, Barnes R, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424:443–7.

    Article  CAS  PubMed  Google Scholar 

  • George CH, Jundi H, Thomas NL, Fry DL, Lai FA. Ryanodine receptors and ventricular arrhythmias: emerging trends in mutations, mechanisms and therapies. J Mol Cell Cardiol. 2007;42:34–50.

    Article  CAS  PubMed  Google Scholar 

  • Ghouse J, Have CT, Skov MW, et al. Numerous Brugada syndrome-associated genetic variants have no effect on J-point elevation, syncope susceptibility, malignant cardiac arrhythmia, and all-cause mortality. Genet Med. 2017;19:521–8.

    Article  PubMed  Google Scholar 

  • Giustetto C, Schimpf R, Mazzanti A, et al. Long-term follow-up of patients with short QT syndrome. J Am Coll Cardiol. 2011;58:587–95.

    Article  PubMed  Google Scholar 

  • Goldenberg I, Moss AJ. Long QT syndrome. J Am Coll Cardiol. 2008;51:2291–300. Available at: PM:18549912

    Article  PubMed  Google Scholar 

  • Goldenberg I, Horr S, Moss AJ, et al. Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J Am Coll Cardiol. 2011;57:51–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gollob MH, Redpath CJ, Roberts JD. The short QT syndrome: proposed diagnostic criteria. J Am Coll Cardiol. 2011;57:802–12.

    Article  PubMed  Google Scholar 

  • Green RC, Berg JS, Grody WW, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013;15:565–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gussak I, Brugada P, Brugada J, et al. Idiopathic short QT interval: a new clinical syndrome? Cardiology. 2000;94:99–102.

    Article  CAS  PubMed  Google Scholar 

  • Hashemi SM, Hund TJ, Mohler PJ. Cardiac ankyrins in health and disease. J Mol Cell Cardiol. 2009;47:203–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi M, Denjoy I, Extramiana F, et al. Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation. 2009;119:2426–34.

    Article  CAS  PubMed  Google Scholar 

  • Hendriks KS, Hendriks MM, Birnie E, et al. Familial disease with a risk of sudden death: a longitudinal study of the psychological consequences of predictive testing for long QT syndrome. Heart Rhythm. 2008;5:719. Available at: PM:18452877

    Article  PubMed  Google Scholar 

  • Hertz CL, Christiansen SL, Ferrero-Miliani L, et al. Next-generation sequencing of 34 genes in sudden unexplained death victims in forensics and in patients with channelopathic cardiac diseases. Int J Legal Med. 2015;129:793–800.

    Article  CAS  PubMed  Google Scholar 

  • Imboden M, Swan H, Denjoy I, et al. Female predominance and transmission distortion in the long-QT syndrome. N Engl J Med. 2006;355:2744. Available at: PM:17192539

    Article  CAS  PubMed  Google Scholar 

  • Imbrici P, Liantonio A, Camerino GM, et al. Therapeutic approaches to genetic ion channelopathies and perspectives in drug discovery. Front Pharmacol. 2016;7:121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. Am Heart J. 1957;54:59–68.

    Article  CAS  PubMed  Google Scholar 

  • Kalia SS, Adelman K, Bale SJ, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017;19(2):249–55.

    Article  PubMed  Google Scholar 

  • Kapplinger JD, Tester DJ, Salisbury BA, et al. Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test. Heart Rhythm. 2009;6:1297. Available at: PM:19716085

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapplinger JD, Tester DJ, Alders M, et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm. 2010;7:33–46.

    Article  PubMed  Google Scholar 

  • Kingsmore SF, Saunders CJ. Deep sequencing of patient genomes for disease diagnosis: when will it become routine? Sci Transl Med. 2011;3:87ps23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kokunai Y, Nakata T, Furuta M, et al. A Kir3.4 mutation causes Andersen-Tawil syndrome by an inhibitory effect on Kir2.1. Neurology. 2014;82:1058–64.

    Article  CAS  PubMed  Google Scholar 

  • Konigstein M, Rosso R, Topaz G, et al. Drug-induced Brugada syndrome: clinical characteristics and risk factors. Heart Rhythm. 2016;13:1083–7.

    Article  PubMed  Google Scholar 

  • Koopmann TT, Beekman L, Alders M, et al. Exclusion of multiple candidate genes and large genomic rearrangements in SCN5A in a Dutch Brugada syndrome cohort. Heart Rhythm. 2007;4:752–5.

    Article  PubMed  Google Scholar 

  • Larsen MK, Berge KE, Leren TP, et al. Postmortem genetic testing of the ryanodine receptor 2 (RYR2) gene in a cohort of sudden unexplained death cases. Int J Legal Med. 2013;127:139–44.

    Article  CAS  PubMed  Google Scholar 

  • Le SS, Bhasin N, Vieyres C, et al. Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease. Proc Natl Acad Sci U S A. 2008;105:15617. Available at: PM:18832177

    Article  Google Scholar 

  • Le Scouarnec S, Karakachoff M, J-BB G, et al. Testing the burden of rare variation in arrhythmia-susceptibility genes provides new insights into molecular diagnosis for Brugada syndrome. Hum Mol Genet. 2015;24:2757–63.

    Article  PubMed  CAS  Google Scholar 

  • Lenegre J. Etiology and pathology of bilateral bundle branch block in relation to complete heart block. Prog Cardiovasc Dis. 1964;6:409–44.

    Article  CAS  PubMed  Google Scholar 

  • Lev M. The pathology of complete atrioventricular block. Prog Cardiovasc Dis. 1964;6:317–26.

    Article  CAS  PubMed  Google Scholar 

  • Li Mura IE, Bauce B, Nava A, et al. Identification of a PKP2 gene deletion in a family with arrhythmogenic right ventricular cardiomyopathy. Eur J Hum Genet. 2013;21:1226–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Ruan Y, Priori SG. Catecholaminergic polymorphic ventricular tachycardia. Prog Cardiovasc Dis. 2008;51:23–30.

    Article  PubMed  Google Scholar 

  • Liu H, El Zein L, Kruse M, et al. Gain-of-function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease. Circ Cardiovasc Genet. 2010;3:374–85.

    Article  CAS  PubMed  Google Scholar 

  • Makita N. Phenotypic overlap of cardiac sodium channelopathies. individual-specific or mutation-specific? Circ J. 2009;73:810–7.

    PubMed  Google Scholar 

  • Makita N, Seki A, Sumitomo N, et al. A connexin40 mutation associated with a malignant variant of progressive familial heart block type I. Circ Arrhythm Electrophysiol. 2012;5:163–72.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Eur Heart J. 2010;31:806–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marsman RF, Bardai A, Postma AV, et al. A complex double deletion in LMNA underlies progressive cardiac conduction disease, atrial arrhythmias, and sudden death. Circ Cardiovasc Genet. 2011;4:280–7.

    Article  CAS  PubMed  Google Scholar 

  • Marsman RF, Barc J, Beekman L, et al. A mutation in CALM1 encoding calmodulin in familial idiopathic ventricular fibrillation in childhood and adolescence. J Am Coll Cardiol. 2014;63:259–66.

    Article  CAS  PubMed  Google Scholar 

  • Mayosi BM, Fish M, Shaboodien G, et al. Identification of cadherin 2 (CDH2) mutations in arrhythmogenic right ventricular cardiomyopathy. Circ Cardiovasc Genet. 2017;10

    Google Scholar 

  • Medeiros-Domingo A, Bhuiyan ZA, Tester DJ, et al. The RYR2-encoded ryanodine receptor/calcium release channel in patients diagnosed previously with either catecholaminergic polymorphic ventricular tachycardia or genotype negative, exercise-induced long QT syndrome: a comprehensive open reading frame mutational analysis. J Am Coll Cardiol. 2009;54:2065–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migdalovich D, Moss AJ, Lopes CM, et al. Mutation and gender-specific risk in type 2 long QT syndrome: implications for risk stratification for life-threatening cardiac events in patients with long QT syndrome. Heart Rhythm. 2011;8:1537–43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohler PJ, Splawski I, Napolitano C, et al. A cardiac arrhythmia syndrome caused by loss of ankyrin-B function. Proc Natl Acad Sci U S A. 2004;101:9137–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita H, Wu J, Zipes DP. The QT syndromes: long and short. Lancet. 2008;372:750. Available at: PM:18761222

    Article  CAS  PubMed  Google Scholar 

  • Moss AJ, Zareba W, Kaufman ES, et al. Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-go-go-related gene potassium channel. Circulation. 2002;105:794–9.

    Article  CAS  PubMed  Google Scholar 

  • Novelli V, Gambelli P, Memmi M, Napolitano C. Challenges in molecular diagnostics of channelopathies in the next-generation sequencing era: less is more? Front Cardiovasc Med. 2016;3:29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nyegaard M, Overgaard MT, Sondergaard MT, et al. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Am J HumGenet. 2012;91:703. Available at: PM:23040497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohno S. The genetic background of arrhythmogenic right ventricular cardiomyopathy. J Arrhythm. 2016;32:398–403.

    Article  PubMed  PubMed Central  Google Scholar 

  • Orgeron GM, Calkins H. Advances in the diagnosis and management of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Curr Cardiol Rep. 2016;18:53.

    Article  PubMed  Google Scholar 

  • Pagon RA, Adam MP, Ardinger HH, et al. GeneReviews(®). Seattle: University of Washington; 1993.

    Google Scholar 

  • Paludan-Müller C, Ahlberg G, Ghouse J, et al. Integration of 60,000 exomes and ACMG guidelines question the role of Catecholaminergic polymorphic ventricular tachycardia-associated variants. Clin Genet. 2017;91:63–72.

    Article  PubMed  CAS  Google Scholar 

  • Patel C, Yan G-XX, Antzelevitch C. Short QT syndrome: from bench to bedside. Circ Arrhythm Electrophysiol. 2010;3:401–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pipilas DC, Johnson CN, Webster G, et al. Novel calmodulin mutations associated with congenital long QT syndrome affect calcium current in human cardiomyocytes. Heart Rhythm. 2016;13:2012–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Postema PG, Wolpert C, Amin AS, et al. Drugs and Brugada syndrome patients: review of the literature, recommendations, and an up-to-date website (www.brugadadrugs.org). Heart Rhythm. 2009;6:1335–41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Priori SG, Napolitano C. Cardiac and skeletal muscle disorders caused by mutations in the intracellular Ca2+ release channels. J Clin Invest. 2005;115(8):2033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priori SG, Schwartz PJ, Napolitano C, et al. Risk stratification in the long-QT syndrome. N Engl J Med. 2003;348:1866–74.

    Article  PubMed  Google Scholar 

  • Priori SG, Napolitano C, Schwartz PJ, et al. Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA. 2004;292:1341–4.

    Article  CAS  PubMed  Google Scholar 

  • Priori SG, Pandit SV, Rivolta I, et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res. 2005;96(7):800.

    Article  CAS  PubMed  Google Scholar 

  • Priori SG, Wilde AA, Horie M, et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and Management of Patients with inherited primary arrhythmia syndromes expert consensus statement on inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in may 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm. 2013;19:e75. Available at: PM:24011539

    Google Scholar 

  • Priori SG, Blomström-Lundqvist C, Mazzanti A, et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015;36:2793–867.

    Article  PubMed  Google Scholar 

  • Probst V, Kyndt F, Potet F, et al. Haploinsufficiency in combination with aging causes SCN5A-linked hereditary Lenègre disease. J Am Coll Cardiol. 2003;41:643–52.

    Article  CAS  PubMed  Google Scholar 

  • Probst V, Wilde AA, Barc J, et al. SCN5A mutations and the role of genetic background in the pathophysiology of Brugada syndrome. Circ Cardiovasc Genet. 2009;2:552. Available at: PM:20031634

    Article  CAS  PubMed  Google Scholar 

  • Probst V, Veltmann C, Eckardt L, et al. Long-term prognosis of patients diagnosed with Brugada syndrome: results from the FINGER Brugada syndrome registry. Circulation. 2010;121:635. Available at: PM:20100972

    Article  CAS  PubMed  Google Scholar 

  • Pua CJ, Bhalshankar J, Miao K, et al. Development of a comprehensive sequencing assay for inherited cardiac condition genes. J Cardiovasc Transl Res. 2016;9:3–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rigato I, Bauce B, Rampazzo A, et al. Compound and digenic heterozygosity predicts lifetime arrhythmic outcome and sudden cardiac death in desmosomal gene-related arrhythmogenic right ventricular cardiomyopathy. Circ Cardiovasc Genet. 2013;6:533–42.

    Article  CAS  PubMed  Google Scholar 

  • Risgaard B, Jabbari R, Refsgaard L, et al. High prevalence of genetic variants previously associated with Brugada syndrome in new exome data. Clin Genet. 2013;84:489–95.

    Article  CAS  PubMed  Google Scholar 

  • Roberts JD, Herkert JC, Rutberg J, et al. Detection of genomic deletions of PKP2 in arrhythmogenic right ventricular cardiomyopathy. Clin Genet. 2013;83:452–6.

    Article  CAS  PubMed  Google Scholar 

  • Roden DM. Clinical practice. Long-QT syndrome. N Engl J Med. 2008;358:169–76.

    Article  CAS  PubMed  Google Scholar 

  • Romano C, Gemme G, Pongiglione R. Rare cardiac arrythmias of the pediatric age. II. Syncopal attacks due to paroxysmal ventricular fibrillation (presentation of 1st case in Italian pediatric literature). Clin Pediatr (Bologna). 1963;45:656–83.

    CAS  Google Scholar 

  • Rooryck C, Kyndt F, Bozon D, et al. New family with catecholaminergic polymorphic ventricular tachycardia linked to the triadin gene. J Cardiovasc Electrophysiol. 2015;26:1146–50.

    Article  PubMed  Google Scholar 

  • Roux-Buisson N, Cacheux M, Fourest-Lieuvin A, et al. Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum Mol Genet. 2012;21:2759–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schott JJ, Charpentier F, Peltier S, et al. Mapping of a gene for long QT syndrome to chromosome 4q25-27. Am J Hum Genet. 1995;57:1114–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schott JJ, Benson DW, Basson CT, et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science. 1998;281:108–11.

    Article  CAS  PubMed  Google Scholar 

  • Schott JJ, Alshinawi C, Kyndt F, et al. Cardiac conduction defects associate with mutations in SCN5A. Nat Genet. 1999;23:20–1.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, Moss AJ, Vincent GM, Crampton RS. Diagnostic criteria for the long QT syndrome. An update. Circulation. 1993;88:782–4.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, Priori SG, Spazzolini C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation. 2001;103:89–95.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, Stramba-Badiale M, Crotti L, et al. Prevalence of the congenital long-QT syndrome. Circulation. 2009;120:1761–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz PJ, Crotti L, Insolia R. Long-QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol. 2012;5:868–77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Selga E, Campuzano O, Pinsach-Abuin ML, et al. Comprehensive genetic characterization of a Spanish Brugada syndrome cohort. PLoS One. 2015;10:e0132888.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sen-Chowdhry S, Syrris P, Ward D, Asimaki A, Sevdalis E, McKenna WJ. Clinical and genetic characterization of families with arrhythmogenic right ventricular dysplasia/cardiomyopathy provides novel insights into patterns of disease expression. Circulation. 2007;115:1710–20.

    Article  PubMed  Google Scholar 

  • Shimizu W, Moss AJ, Wilde AA, et al. Genotype-phenotype aspects of type 2 long QT syndrome. J Am Coll Cardiol. 2009;54:2052–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sisakian H. Cardiomyopathies: evolution of pathogenesis concepts and potential for new therapies. World J Cardiol. 2014;6:478–94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Skinner JR, Crawford J, Smith W, et al. Prospective, population-based long QT molecular autopsy study of postmortem negative sudden death in 1 to 40 year olds. Heart Rhythm. 2011;8:412–9.

    Article  PubMed  Google Scholar 

  • Spazzolini C, Mullally J, Moss AJ, et al. Clinical implications for patients with long QT syndrome who experience a cardiac event during infancy. J Am Coll Cardiol. 2009;54:832–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spjuth O, Bongcam-Rudloff E, Dahlberg J, et al. Recommendations on e-infrastructures for next-generation sequencing. Gigascience. 2016;5:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spoonamore KG, Ware SM. Genetic testing and genetic counseling in patients with sudden death risk due to heritable arrhythmias. Heart Rhythm. 2016;13:789–97.

    Article  PubMed  Google Scholar 

  • Stallmeyer B, Koopmann M, Schulze-Bahr E. Identification of novel mutations in LMNA associated with familial forms of dilated cardiomyopathy. Genet Test Mol Biomarkers. 2012;16:543–9.

    Article  CAS  PubMed  Google Scholar 

  • Steffensen AB, Refaat MM, J-PP D, et al. High incidence of functional ion-channel abnormalities in a consecutive long QT cohort with novel missense genetic variants of unknown significance. Sci Rep. 2015;5:10009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudmant PH, Rausch T, Gardner EJ, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015;526:75–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan HL, Bezzina CR, Smits JP, Verkerk AO, Wilde AA. Genetic control of sodium channel function. Cardiovasc Res. 2003;57:961. Available at: PM:12650874

    Article  CAS  PubMed  Google Scholar 

  • Tan HL, Hofman N, van Langen IM, van der Wal AC, Wilde AA. Sudden unexplained death: heritability and diagnostic yield of cardiological and genetic examination in surviving relatives. Circulation. 2005;112:207–13.

    Article  PubMed  Google Scholar 

  • Te Riele AS, Agullo-Pascual E, James CA, et al. Multilevel analyses of SCN5A mutations in arrhythmogenic right ventricular dysplasia/cardiomyopathy suggest non-canonical mechanisms for disease pathogenesis. Cardiovasc Res. 2017;113:102–11.

    Article  CAS  Google Scholar 

  • Tennessen JA, Bigham AW, O’Connor TD, et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012;337:64–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tester DJ, Ackerman MJ. Novel gene and mutation discovery in congenital long QT syndrome: let’s keep looking where the street lamp standeth. Heart Rhythm. 2008;5:1282–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tester DJ, Ackerman MJ. Genetics of long QT syndrome. Methodist Debakey Cardiovasc J. 2014;10:29–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tester DJ, Medeiros-Domingo A, Will ML, Haglund CM, Ackerman MJ. Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsy-negative sudden unexplained death referred for postmortem genetic testing. Mayo Clin Proc. 2012;87:524–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomaselli GF, Barth AS. Ion channel diseases: an update for 2016. Curr Treat Options Cardiovasc Med. 2016;18:21.

    Article  PubMed  Google Scholar 

  • Tully I, Atherton J, Hunt L, Ingles J, Semsarian C, McGaughran J. Rarity and phenotypic heterogeneity provide challenges in the diagnosis of Andersen-Tawil syndrome: two cases presenting with ECGs mimicking catecholaminergic polymorphic ventricular tachycardia (CPVT). Int J Cardiol. 2015;201:473–5.

    Article  CAS  PubMed  Google Scholar 

  • Van der Werf C, Wilde AA. Catecholaminergic polymorphic ventricular tachycardia: from bench to bedside. Heart. 2013;99:497–504.

    Article  PubMed  CAS  Google Scholar 

  • Veltmann C, Borggrefe M. Arrhythmias: a “Schwartz score” for short QT syndrome. Nat Rev Cardiol. 2011;8:251–2.

    Article  PubMed  Google Scholar 

  • Ward OC. A new familial cardiac syndrome in children. J Irish Med Assoc. 1964;54:103–6.

    CAS  Google Scholar 

  • Watanabe H, Koopmann TT, Le Scouarnec S, et al. Sodium channel β1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest. 2008;118:2260–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wijeyeratne YD, Behr ER. Sudden death and cardiac arrest without phenotype: the utility of genetic testing. Trends Cardiovasc Med. 2017;27(3):207–13.

    Article  PubMed  Google Scholar 

  • Wilde AA, Behr ER. Genetic testing for inherited cardiac disease. Nat Rev Cardiol. 2013;10:571–83.

    Article  CAS  PubMed  Google Scholar 

  • Wilde AA, Bhuiyan ZA, Crotti L, et al. Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia. N Engl J Med. 2008;358:2024–9.

    Article  CAS  PubMed  Google Scholar 

  • Winkel BG, Holst AG, Theilade J, et al. Nationwide study of sudden cardiac death in persons aged 1-35 years. Eur Heart J. 2011;32:983–90.

    Article  PubMed  Google Scholar 

  • Winkel BG, Larsen MK, Berge KE, et al. The prevalence of mutations in KCNQ1, KCNH2, and SCN5A in an unselected national cohort of young sudden unexplained death cases. J Cardiovasc Electrophysiol. 2012;23:1092–8.

    Article  PubMed  Google Scholar 

  • Wolf CM, Berul CI. Inherited conduction system abnormalities--one group of diseases, many genes. J Cardiovasc Electrophysiol. 2006;17:446–55.

    Article  PubMed  Google Scholar 

  • Wolf CM, Wang L, Alcalai R, et al. Lamin a/C haploinsufficiency causes dilated cardiomyopathy and apoptosis-triggered cardiac conduction system disease. J Mol Cell Cardiol. 2008;44:293–303.

    Article  CAS  PubMed  Google Scholar 

  • Zawistowski M, Reppell M, Wegmann D, et al. Analysis of rare variant population structure in Europeans explains differential stratification of gene-based tests. Eur J Hum Genet. 2014;22:1137–44.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Kyndt .

Editor information

Editors and Affiliations

Ethics declarations

Sources of Funding

Julien Barc was supported by the H2020-MSCA-IF-2014 Program of the European Commission (RISTRAD-661617).

Conflict of Interest

Florence Kyndt declares that she has no conflict of interest. Jean-Baptiste Gourraud declares that he has no conflict of interest. Julien Barc declares that he has no conflict of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kyndt, F., Gourraud, JB., Barc, J. (2018). Genetic Testing for Inheritable Cardiac Channelopathies. In: Thomas, D., Remme, C. (eds) Channelopathies in Heart Disease . Cardiac and Vascular Biology, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-77812-9_13

Download citation

Publish with us

Policies and ethics