Skip to main content

Long and Short QT Syndromes

  • Chapter
  • First Online:
Channelopathies in Heart Disease

Part of the book series: Cardiac and Vascular Biology ((Abbreviated title: Card. vasc. biol.,volume 6))

  • 703 Accesses

Abstract

The long and short QT syndromes are genetically transmitted arrhythmogenic diseases characterized by an abnormal QTc on the basal ECG and by an increased risk of life-threatening arrhythmias. While in the long QT syndrome well-established diagnostic criteria are available as well as effective treatments, in the short QT syndrome, much less is known in terms of diagnosis, risk stratification and pharmacological treatment. In this chapter we discuss for each syndrome current knowledge on their genetic basis, clinical presentation, diagnosis, risk stratification and therapy. Furthermore, multisystem disorders associated with a prolongation of the QT, such as the Jervell and Lange-Nielsen syndrome, the Timothy syndrome, the ankyrin-B syndrome and the Andersen-Tawil syndrome, are described. Finally, specific subtypes of the long QT syndrome, characterized by high malignancy and frequent failure of available therapies, such as calmodulin-related LQTS and the triadin knockout syndrome, are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott GW, Sesti F, Splawski I, et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell. 1999;97(2):175–87.

    Article  CAS  PubMed  Google Scholar 

  • Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace. 2011;13(8):1077–109. Erratum in: Europace. 2012 Feb;14(2):277.

    Article  PubMed  Google Scholar 

  • Altmann HM, Tester DJ, Will ML, et al. Homozygous/compound heterozygous triadin mutations associated with autosomal-recessive long-QT syndrome and pediatric sudden cardiac arrest: elucidation of the triadin knockout syndrome. Circulation. 2015;131(23):2051–60.

    Article  CAS  PubMed  Google Scholar 

  • Amin AS, Giudicessi JR, Tijsen AJ, et al. Variants in the 3’ untranslated region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with type 1 long QT syndrome in an allele-specific manner. Eur Heart J. 2012;33(6):714–23.

    Article  CAS  PubMed  Google Scholar 

  • Andersen ED, Krasilnikoff PA, Overvad H. Intermittent muscular weakness, extrasystoles, and multiple developmental anomalies. A new syndrome? Acta Paediatr Scand. 1971;60(5):559–64.

    Article  CAS  PubMed  Google Scholar 

  • Anttonen O, Junttila MJ, Rissanen H, et al. Prevalence and prognostic significance of short QT interval in a middle-aged Finnish population. Circulation. 2007;116(7):714–20.

    Article  CAS  PubMed  Google Scholar 

  • Antzelevitch C, Pollevick GD, Cordeiro JM, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115(4):442–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arking DE, Pfeufer A, Post W, et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet. 2006;38(6):644–51.

    Article  CAS  PubMed  Google Scholar 

  • Arking DE, Pulit SL, Crotti L, et al. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat Genet. 2014;46(8):826–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnestad M, Crotti L, Rognum TO, et al. Prevalence of long-QT syndrome gene variants in sudden infant death syndrome. Circulation. 2007;115(3):361–7.

    Article  PubMed  Google Scholar 

  • Attwell D, Lee JA. A cellular basis for the primary long Q-T syndromes. Lancet. 1988;1(8595):1136–9.

    Article  CAS  PubMed  Google Scholar 

  • Bai CX, Kurokawa J, Tamagawa M, et al. Nontranscriptional regulation of cardiac repolarization currents by testosterone. Circulation. 2005;112(12):1701–10.

    Article  CAS  PubMed  Google Scholar 

  • Barc J, Briec F, Schmitt S, et al. Screening for copy number variation in genes associated with the long QT syndrome: clinical relevance. J Am Coll Cardiol. 2011;57(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  • Barhanin J, Lesage F, Guillemare E, et al. K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature. 1996;384(6604):78–80.

    Article  CAS  PubMed  Google Scholar 

  • Bazett HC. An analysis of the time-relations of electrocardiograms. Ann Noninvasive Electrocardiol. 1997;2(2):177–94.

    Article  Google Scholar 

  • Bellocq C, van Ginneken AC, Bezzina CR, et al. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation. 2004;109(20):2394–7.

    Article  PubMed  Google Scholar 

  • Bennett PB, Yazawa K, Makita N, et al. Molecular mechanism for an inherited cardiac arrhythmia. Nature. 1995;376(6542):683–5.

    Article  CAS  PubMed  Google Scholar 

  • Berthet M, Denjoy I, Donger C, et al. C-terminal HERG mutations: the role of hypokalemia and a KCNQ1-associated mutation in cardiac event occurrence. Circulation. 1999;99(11):1464–70.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi L, Shen Z, Dennis AT, et al. Cellular dysfunction of LQT5-minK mutants: abnormalities of IKs, IKr and trafficking in long QT syndrome. Hum Mol Genet. 1999;8(8):1499–507.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi L, Priori SG, Napolitano C, et al. Mechanisms of I(Ks) suppression in LQT1 mutants. Am J Physiol Heart Circ Physiol. 2000;279(6):H3003–11.

    Article  CAS  PubMed  Google Scholar 

  • Boczek NJ, Best JM, Tester DJ, et al. Exome sequencing and systems biology converge to identify novel mutations in the L-type calcium channel, CACNA1C, linked to autosomal dominant long QT syndrome. Circ Cardiovasc Genet. 2013;6(3):279–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boczek NJ, Gomez-Hurtado N, Ye D, et al. Spectrum and prevalence of CALM1-, CALM2-, and CALM3-encoded calmodulin variants in long QT syndrome and functional characterization of a novel long QT syndrome-associated calmodulin missense variant, E141G. Circ Cardiovasc Genet. 2016;9(2):136–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brink PA, Crotti L, Corfield V, et al. Phenotypic variability and unusual clinical severity of congenital long QT syndrome in a founder population. Circulation. 2005;112:2602–10.

    Article  PubMed  Google Scholar 

  • Brugada R, Hong K, Dumaine R, et al. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation. 2004;109(1):30–5.

    Article  CAS  PubMed  Google Scholar 

  • Buber J, Mathew J, Moss AJ, et al. Risk of recurrent cardiac events after onset of menopause in women with congenital long-QT syndrome types 1 and 2. Circulation. 2011;123(24):2784–91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Canűn S, Pérez N, Beirana LG. Andersen syndrome autosomal dominant in three generations. Am J Med Genet. 1999;85(2):147–56.

    Article  PubMed  Google Scholar 

  • Carnethon MR, Anthony MS, Cascio WE, et al. A prospective evaluation of the risk of QT prolongation with hormone replacement therapy: the atherosclerosis risk in communities study. Ann Epidemiol. 2003;13(7):530–6.

    Article  PubMed  Google Scholar 

  • Chen L, Marquardt ML, Tester DJ, et al. Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proc Natl Acad Sci USA. 2007;104(52):20990–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chockalingam P, Crotti L, Girardengo G, et al. Not all beta-blockers are equal in the management of long QT syndrome types 1 and 2. J Am Coll Cardiol. 2012;60(20):2092–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi G, Kopplin LJ, Tester DJ, et al. Spectrum and frequency of cardiac channel defects in swimming-triggered arrhythmia syndromes. Circulation. 2004;110(15):2119–24.

    Article  PubMed  Google Scholar 

  • Chopra N, Knollmann BC. Triadin regulates cardiac muscle couplon structure and microdomain Ca(2+) signalling: a path towards ventricular arrhythmias. Cardiovasc Res. 2013;98(2):187–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chopra N, Yang T, Asghari P, et al. Ablation of triadin causes loss of cardiac Ca2+ release units, impaired excitation-contraction coupling, and cardiac arrhythmias. Proc Natl Acad Sci U S A. 2009;106(18):7636–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chouabe C, Neyroud N, Guicheney P, et al. Properties of KvLQT1 K+ channel mutations in Romano-Ward and Jervell and Lange-Nielsen inherited cardiac arrhythmias. EMBO J. 1997;116(17):5472–9.

    Article  Google Scholar 

  • Collura CA, Johnson JN, Moir C, et al. Left cardiac sympathetic denervation for the treatment of long QT syndrome and catecholaminergic polymorphic ventricular tachycardia using video-assisted thoracic surgery. Heart Rhythm. 2009;6(6):752–9.

    Article  PubMed  Google Scholar 

  • Conrath CE, Opthof T. Ventricular repolarization: an overview of (patho)physiology, sympathetic effects and genetic aspects. Prog Biophys Mol Biol. 2006;92(3):269–307.

    Article  CAS  PubMed  Google Scholar 

  • Crotti L, Lundquist AL, Insolia R, et al. KCNH2-K897T is a genetic modifier of latent congenital long-QT syndrome. Circulation. 2005;112(9):1251–8.

    Article  PubMed  Google Scholar 

  • Crotti L, Spazzolini C, Schwartz PJ, et al. The common long-QT syndrome mutation KCNQ1/A341V causes unusually severe clinical manifestations in patients with different ethnic backgrounds: toward a mutation-specific risk stratification. Circulation. 2007;116(21):2366–75.

    Article  CAS  PubMed  Google Scholar 

  • Crotti L, Celano G, Dagradi F, et al. Congenital long QT syndrome. Orphanet J Rare Dis. 2008;3:18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crotti L, Lewandowska MA, Schwartz PJ, et al. A KCNH2 branch point mutation causing aberrant splicing contributes to an explanation of genotype-negative long QT syndrome. Heart Rhythm. 2009a;6(2):212–8.

    Article  PubMed  Google Scholar 

  • Crotti L, Monti MC, Insolia R, et al. NOS1AP is a genetic modifier of the long-QT syndrome. Circulation. 2009b;120(17):1657–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crotti L, Spazzolini C, Porretta AP, et al. Vagal reflexes following an exercise stress test: a simple clinical tool for gene-specific risk stratification in the long QT syndrome. J Am Coll Cardiol. 2012;60:2515–224.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crotti L, Johnson CN, Graf E, et al. Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation. 2013a;127(9):1009–17.

    Article  CAS  PubMed  Google Scholar 

  • Crotti L, Tester DJ, White WM, et al. Long QT syndrome-associated mutations in intrauterine fetal death. JAMA. 2013b;309(14):1473–82.

    Article  CAS  PubMed  Google Scholar 

  • Crotti L, Dossena C, Spazzolini C, et al. LQTS diagnosis in genotype-negative athletes with a long QT interval. A different clinical entity? Eur Heart J. 2016a;37(Abstract Suppl):207.

    Google Scholar 

  • Crotti L, Lahtinen AM, Spazzolini C, et al. Genetic modifiers for the long-QT syndrome: how important is the role of variants in the 3’ untranslated region of KCNQ1? Circ Cardiovasc Genet. 2016b;9(4):330–9.

    Article  CAS  PubMed  Google Scholar 

  • Crotti L, Spazzolini C, Boczek NJ, et al. International Calmodulinopathy Registry (ICaMR). Circulation. 2016c;134:A14840.

    Google Scholar 

  • Curran ME, Splawski I, Timothy KW, et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995;80(5):795–803.

    Article  CAS  PubMed  Google Scholar 

  • Dahimène S, Alcoléa S, Naud P, et al. The N-terminal juxtamembranous domain of KCNQ1 is critical for channel surface expression: implications in the Romano-Ward LQT1 syndrome. Circ Res. 2006;99(10):1076–83.

    Article  PubMed  CAS  Google Scholar 

  • De Ferrari GM, Schwartz PJ. Long QT syndrome, a purely electrical disease? Not anymore. Eur Heart J. 2009;30(3):253–5.

    Article  PubMed  Google Scholar 

  • De Ferrari GM, Schwartz PJ. Vox clamantis in deserto. We spoke but nobody was listening: echocardiography can help risk stratification of the long-QT syndrome. Eur Heart J. 2015;36(3):148–50.

    Article  PubMed  Google Scholar 

  • De Ferrari GM, Nador F, Beria G, et al. Effect of calcium channel block on the wall motion abnormality of the idiopathic long QT syndrome. Circulation. 1994;89(5):2126–32.

    Article  PubMed  Google Scholar 

  • de Villiers CP, van der Merwe L, Crotti L, et al. AKAP9 is a genetic modifier of congenital long-QT syndrome type 1. Circ Cardiovasc Genet. 2014;7(5):599–606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delannoy E, Sacher F, Maury P, et al. Cardiac characteristics and long-term outcome in Andersen-Tawil syndrome patients related to KCNJ2 mutation. Europace. 2013;15(12):1805–11.

    Article  PubMed  Google Scholar 

  • Delisle BP, Anson BD, Rajamani S, et al. Biology of cardiac arrhythmias: ion channel protein trafficking. Circ Res. 2004;94(11):1418–28.

    Article  CAS  PubMed  Google Scholar 

  • Dhutia H, Malhotra A, Parpia S, et al. The prevalence and significance of a short QT interval in 18,825 low-risk individuals including athletes. Br J Sports Med. 2016;50(2):124–9.

    Article  PubMed  Google Scholar 

  • Donaldson MR, Jensen JL, Tristani-Firouzi M, et al. PIP2 binding residues of Kir2.1 are common targets of mutations causing Andersen syndrome. Neurology. 2003;60(11):1811–6.

    Article  CAS  PubMed  Google Scholar 

  • Donger C, Denjoy I, Berthet M, et al. KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation. 1997;96(9):2778–81.

    Article  CAS  PubMed  Google Scholar 

  • Drici MD, Burklow TR, Haridasse V, et al. Sex hormones prolong the QT interval and downregulate potassium channel expression in the rabbit heart. Circulation. 1996;94(6):1471–4.

    Article  CAS  PubMed  Google Scholar 

  • Duchatelet S, Crotti L, Peat RA, et al. Identification of a KCNQ1 polymorphism acting as a protective modifier against arrhythmic risk in long-QT syndrome. Circ Cardiovasc Genet. 2013;6(4):354–61.

    Article  CAS  PubMed  Google Scholar 

  • Dumaine R, Wang Q, Keating MT, et al. Multiple mechanisms of Na+ channel-linked long-QT syndrome. Circ Res. 1996;78:916–24.

    Article  CAS  PubMed  Google Scholar 

  • Earle N, Yeo Han D, Pilbrow A, et al. Single nucleotide polymorphisms in arrhythmia genes modify the risk of cardiac events and sudden death in long QT syndrome. Heart Rhythm. 2014;11(1):76–82.

    Article  PubMed  Google Scholar 

  • Eddy CA, MacCormick JM, Chung SK, et al. Identification of large gene deletions and duplications in KCNQ1 and KCNH2 in patients with long QT syndrome. Heart Rhythm. 2008;5(9):1275–81.

    Article  PubMed  Google Scholar 

  • Etheridge SP, Sanatani S, Cohen MI, et al. Long QT syndrome in children in the era of implantable defibrillators. J Am Coll Cardiol. 2007;50(14):1335–40.

    Article  PubMed  Google Scholar 

  • Etheridge SP, Bowles NE, Arrington CB, et al. Somatic mosaicism contributes to phenotypic variation in Timothy syndrome. Am J Med Genet A. 2011;155A(10):2578–83.

    Article  PubMed  Google Scholar 

  • Gaita F, Giustetto C, Bianchi F, et al. Short QT Syndrome: a familial cause of sudden death. Circulation. 2003;108(8):965–70.

    Article  PubMed  Google Scholar 

  • Gaita F, Giustetto C, Bianchi F, et al. Short QT syndrome: pharmacological treatment. J Am Coll Cardiol. 2004;43(8):1494–9.

    Article  CAS  PubMed  Google Scholar 

  • Gallagher MM, Magliano G, Yap YG, et al. Distribution and prognostic significance of QT intervals in the lowest half centile in 12,012 apparently healthy persons. Am J Cardiol. 2006;98(7):933–5.

    Article  PubMed  Google Scholar 

  • George AL Jr. Calmodulinopathy: a genetic trilogy. Heart Rhythm. 2015;12(2):423–4.

    Article  PubMed  Google Scholar 

  • Gillis J, Burashnikov E, Antzelevitch C, et al. Long QT, syndactyly, joint contractures, stroke and novel CACNA1C mutation: expanding the spectrum of Timothy syndrome. Am J Med Genet A. 2012;158A(1):182–7.

    Article  PubMed  CAS  Google Scholar 

  • Giustetto C, Schimpf R, Mazzanti A, et al. Long-term follow-up of patients with short QT syndrome. J Am Coll Cardiol. 2011;58(6):587–95.

    Article  PubMed  Google Scholar 

  • Giustetto C, Scrocco C, Schimpf R, et al. Usefulness of exercise test in the diagnosis of short QT syndrome. Europace. 2015;17(4):628–34.

    Article  PubMed  Google Scholar 

  • Goldenberg I, Horr S, Moss AJ, et al. Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J Am Coll Cardiol. 2011;57(1):51–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gollob MH, Redpath CJ, Roberts JD. The short QT syndrome: proposed diagnostic criteria. J Am Coll Cardiol. 2011;57(7):802–12.

    Article  PubMed  Google Scholar 

  • Grant AO. Cardiac ion channels. Circ Arrhythm Electrophysiol. 2009;2(2):185–94.

    Article  PubMed  Google Scholar 

  • Gussak I, Brugada P, Brugada J, et al. Idiopathic short QT interval: a new clinical syndrome? Cardiology. 2000;94(2):99–102.

    Article  CAS  PubMed  Google Scholar 

  • Haitin Y, Attali B. The C-terminus of Kv7 channels: a multifunctional module. J Physiol. 2008;586(7):1803–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harmer SC, Tinker A. The role of abnormal trafficking of KCNE1 in long QT syndrome 5. Biochem Soc Trans. 2007;35(Pt 5):1074–6.

    Article  CAS  PubMed  Google Scholar 

  • Haugaa KH, Edvardsen T, Leren TP, et al. Left ventricular mechanical dispersion by tissue Doppler imaging: a novel approach for identifying high-risk individuals with long QT syndrome. Eur Heart J. 2009;30(3):330–7.

    Article  PubMed  Google Scholar 

  • Hayashi K, Konno T, Fujino N, et al. Impact of updated diagnostic criteria for long QT syndrome on clinical detection of diseased patients. JACC Clin Electrophysiol. 2016;2(3):279–87.

    Article  PubMed  Google Scholar 

  • Heradien MJ, Goosen A, Crotti L, et al. Does pregnancy increase cardiac risk for LQT1 patients with the KCNQ1-A341V mutation? J Am Coll Cardiol. 2006;48:1410–5.

    Article  CAS  PubMed  Google Scholar 

  • Hong K, Bjerregaard P, Gussak I, et al. Short QT syndrome and atrial fibrillation caused by mutation in KCNH2. J Cardiovasc Electrophysiol. 2005;16(4):394–6.

    Article  PubMed  Google Scholar 

  • Hoorntje T, Alders M, van Tintelen P, et al. Homozygous premature truncation of the HERG protein: the human HERG knockout. Circulation. 1999;100(12):1264–7.

    Article  CAS  PubMed  Google Scholar 

  • Horner JM, Horner MM, Ackerman MJ. The diagnostic utility of recovery phase QTc during treadmill exercise stress testing in the evaluation of long QT syndrome. Heart Rhythm. 2011;8(11):1698–704.

    Article  PubMed  Google Scholar 

  • Itoh H, Crotti L, Aiba T, et al. The genetics underlying acquired long QT syndrome: impact for genetic screening. Eur Heart J. 2016;37(18):1456–64.

    Article  PubMed  Google Scholar 

  • Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval, and sudden death. Am Heart J. 1957;54(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  • Johnson JN, Ackerman MJ. Competitive sports participation in athletes with congenital long QT syndrome. JAMA. 2012;308(8):764–5.

    Article  CAS  PubMed  Google Scholar 

  • Johnson WH Jr, Yang P, Yang T, et al. Clinical, genetic, and biophysical characterization of a homozygous HERG mutation causing severe neonatal long QT syndrome. Pediatr Res. 2003;53(5):744–8.

    Article  CAS  PubMed  Google Scholar 

  • Kääb S, Pfeufer A, Hinterseer M, et al. Long QT syndrome. Why does sex matter? Z Kardiol. 2004;93(9):641–5.

    Article  PubMed  Google Scholar 

  • Kadish AH, Greenland P, Limacher MC, et al. Estrogen and progestin use and the QT interval in postmenopausal women. Ann Noninvasive Electrocardiol. 2004;9(4):366–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of cardiac arrhythmias. Cell. 2001;104(4):569–80.

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Ghosh S, Liu H, et al. Calmodulin mediates Ca2+ sensitivity of sodium channels. J Biol Chem. 2004;279:45004–12.

    Article  CAS  PubMed  Google Scholar 

  • Kirilmaz A, Ulusoy RE, Kardesoglu E, et al. Short QT interval syndrome: a case report. J Electrocardiol. 2005;38(4):371–4.

    Article  PubMed  Google Scholar 

  • Klein R, Ganelin R, Marks JF, et al. Periodic paralysis with cardiac arrhythmia. J Pediatr. 1963;62(3):371–85.

    Article  CAS  PubMed  Google Scholar 

  • Kolder IC, Tanck MW, Postema PG, et al. Analysis for genetic modifiers of disease severity in patients with long-QT syndrome type 2. Circ Cardiovasc Genet. 2015;8(3):447–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koopmann TT, Alders M, Jongbloed RJ, et al. Long QT syndrome caused by a large duplication in the KCNH2 (HERG) gene undetectable by current polymerase chain reaction-based exon-scanning methodologies. Heart Rhythm. 2006;3(1):52–5.

    Article  PubMed  Google Scholar 

  • Kurokawa J, Chen L, Kass RS. Requirement of subunit expression for cAMP mediated regulation of a heart potassium channel. Proc Natl Acad Sci U S A. 2003;100(4):2122–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landstrom AP, Boczek NJ, Ye D, et al. Novel long QT syndrome-associated missense mutation, L762F, in CACNA1C-encoded L-type calcium channel imparts a slower inactivation tau and increased sustained and window current. Int J Cardiol. 2016;220:290–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Larsen LA, Fosdal I, Andersen PS, et al. Recessive Romano-Ward syndrome associated with compound heterozygosity for two mutations in the KVLQT1 gene. Eur J Hum Genet. 1999;7(6):724–8.

    Article  CAS  PubMed  Google Scholar 

  • Le Scouarnec S, Bhasin N, Vieyres C, et al. Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease. Proc Natl Acad Sci U S A. 2008;105(40):15617–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee MP, Ravenel JD, Hu RJ, et al. Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest. 2000;106(12):1447–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leinonen JT, Crotti L, Djupsjöbacka A, et al. The genetics underlying idiopathic ventricular fibrillation: A special role for catecholaminergic polymorphic ventricular tachycardia? Int J Cardiol. 2018;250:139–45.

    Article  PubMed  Google Scholar 

  • Liu X-K, Katchman A, Whitfield BH, et al. In vivo androgen treatment shortens the QT interval and increases the densities of inward and delayed rectifier potassium currents in orchiectomized male rabbits. Cardiovasc Res. 2003;57(1):28–36.

    Article  CAS  PubMed  Google Scholar 

  • Lo-A-Njoe SM, Wilde AA, van Erven L, et al. Syndactyly and long QT syndrome (CaV1.2 missense mutation G406R) is associated with hypertrophic cardiomyopathy. Heart Rhythm. 2005;2(12):1365–8.

    Article  PubMed  Google Scholar 

  • Locati EH, Pancaldi A, Pala M, et al. Exercise-induced electrocardiographic changes in patients with the long QT syndrome. Circulation. 1988;78(Suppl II):42.

    Google Scholar 

  • Lu LX, Zhou W, Zhang X, et al. Short QT syndrome: a case report and review of literature. Resuscitation. 2006;71(1):115–21.

    Article  PubMed  Google Scholar 

  • Lupoglazoff JM, Cheav T, Baroudi G, et al. Homozygous SCN5A mutation in long-QT syndrome with functional two-to-one atrioventricular block. Circ Res. 2001;89(2):E16–21.

    Article  CAS  PubMed  Google Scholar 

  • Makita N, Behr E, Shimizu W, et al. The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. J Clin Invest. 2008;118(6):2219–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makita N, Yagihara N, Crotti L, et al. Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Circ Cardiovasc Genet. 2014;7(4):466–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malfatto G, Beria G, Sala S, et al. Quantitative analysis of T wave abnormalities and their prognostic implications in the idiopathic long QT syndrome. J Am Coll Cardiol. 1994;23(2):296–301.

    Article  CAS  PubMed  Google Scholar 

  • Marks ML, Trippel DL, Keating MT. Long QT syndrome associated with syndactyly identified in females. Am J Cardiol. 1995a;76(10):744–5.

    Article  CAS  PubMed  Google Scholar 

  • Marks ML, Whisler SL, Clericuzio C, et al. A new form of long QT syndrome associated with syndactyly. J Am Coll Cardiol. 1995b;25(1):59–64.

    Article  CAS  PubMed  Google Scholar 

  • Marsman RF, Barc J, Beekman L, et al. A mutation in CALM1 encoding calmodulin in familial idiopathic ventricular fibrillation in childhood and adolescence. J Am Coll Cardiol. 2014;63(3):259–66.

    Article  CAS  PubMed  Google Scholar 

  • Marx SO, Kurokawa J, Reiken S, et al. Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science. 2002;295(5554):496–9.

    Article  CAS  PubMed  Google Scholar 

  • Mazzanti A, Kanthan A, Monteforte N, et al. Novel insight into the natural history of short QT syndrome. J Am Coll Cardiol. 2014;63(13):1300–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Medeiros-Domingo A, Kaku T, Tester DJ, et al. SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation. 2007;116(2):134–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Merri M, Benhorin J, Alberti M, et al. Electrocardiographic quantitation of ventricular repolarization. Circulation. 1989;80(5):1301–8.

    Article  CAS  PubMed  Google Scholar 

  • Mohler PJ, Schott JJ, Gramolini AO, et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature. 2003;421(6923):634–9.

    Article  CAS  PubMed  Google Scholar 

  • Mohler PJ, Splawski I, Napolitano C, et al. A cardiac arrhythmia syndrome caused by loss of ankyrin-B function. Proc Natl Acad Sci U S A. 2004;101(24):9137–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohler PJ, Le Scouarnec S, Denjoy I, et al. Defining the cellular phenotype of ‘ankyrin-B syndrome’ variants: human ANK2 variants associated with clinical phenotypes display a spectrum of activities in cardiomyocytes. Circulation. 2007;115(4):432–41.

    Article  PubMed  Google Scholar 

  • Moss AJ, McDonald J. Unilateral cervicothoracic sympathetic ganglionectomy for the treatment of long QT interval syndrome. N Engl J Med. 1971;285(16):903–4.

    Article  CAS  PubMed  Google Scholar 

  • Moss AJ, Schwartz PJ, Crampton RS, et al. The long QT syndrome: a prospective international study. Circulation. 1985;71(1):17–21.

    Article  CAS  PubMed  Google Scholar 

  • Moss AJ, Schwartz PJ, Crampton RS, et al. The long QT syndrome. Prospective longitudinal study of 328 families. Circulation. 1991;84(3):1136–44.

    Article  CAS  PubMed  Google Scholar 

  • Moss AJ, Robinson JL, Gessman L, et al. Comparison of clinical and genetic variables of cardiac events associated with loud noise versus swimming among subjects with the long QT syndrome. Am J Cardiol. 1999;84(8):876–9.

    Article  CAS  PubMed  Google Scholar 

  • Moss AJ, Zareba W, Hall WJ, et al. Effectiveness and limitations of blocker therapy in congenital long-QT syndrome. Circulation. 2000;101(6):616–23.

    Article  CAS  PubMed  Google Scholar 

  • Moss AJ, Zareba W, Kaufman ES, et al. Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-gogo-related gene potassium channel. Circulation. 2002;105(7):794–9.

    Article  CAS  PubMed  Google Scholar 

  • Moss AJ, Shimizu W, Wilde AA, et al. Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation. 2007;115(19):2481–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moss AJ, Zareba W, Schwarz KQ, et al. Ranolazine shortens repolarization in patients with sustained inward sodium current due to type-3 long-QT syndrome. J Cardiovasc Electrophysiol. 2008;19(12):1289–93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nador F, Beria G, De Ferrari GM, et al. Unsuspected echocardiographic abnormality in the long QT syndrome. Diagnostic, prognostic, and pathogenetic implications. Circulation. 1991;84(4):1530–42.

    Article  CAS  PubMed  Google Scholar 

  • Nagaoka I, Shimizu W, Itoh H, et al. Mutation site dependent variability of cardiac events in Japanese LQT2 form of congenital long-QT syndrome. Circ J. 2008;72(5):694–9.

    Article  PubMed  Google Scholar 

  • Napolitano C, Antzelevitch C. Phenotypical manifestations of mutations in the genes encoding subunits of the cardiac voltage-dependent L-type calcium channel. Circ Res. 2011;108(5):607–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napolitano C, Splawski I, Timothy KW, et al. Timothy syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews®. Seattle, WA: University of Washington. Seattle; 1993-2018; 2006 Feb 15 [Updated 2015 Jul 16].

    Google Scholar 

  • Napolitano C, Schwartz PJ, Brown AM, et al. Evidence for a cardiac ion channel mutation underlying drug-induced QT prolongation and life-threatening arrhythmias. J Cardiovasc Electrophysiol. 2000;11(6):691–6.

    Article  CAS  PubMed  Google Scholar 

  • Napolitano C, Priori SG, Schwartz PJ, et al. Genetic testing in the long QT syndrome: development and validation of an efficient approach to genotyping in clinical practice. JAMA. 2005;294(23):2975–80.

    Article  CAS  PubMed  Google Scholar 

  • Newton-Cheh C, Larson MG, Corey DC, et al. QT interval is a heritable quantitative trait with evidence of linkage to chromosome 3 in a genome-wide linkage analysis: The Framingham Heart Study. Heart Rhythm. 2005;2(3):277–84.

    Article  PubMed  Google Scholar 

  • Newton-Cheh C, Eijgelsheim M, Rice KM, et al. Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat Genet. 2009;41(4):399–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neyroud N, Tesson F, Denjoy I, et al. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet. 1997;15(2):186–9.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HL, Pieper GH, Wilders R. Andersen–Tawil syndrome: clinical and molecular aspects. Int J Cardiol. 2013;170(1):1–16.

    Article  PubMed  Google Scholar 

  • Nof E, Cordeiro JM, Pérez GJ, et al. A common single nucleotide polymorphism can exacerbate long-QT type 2 syndrome leading to sudden infant death. Circ Cardiovasc Genet. 2010;3(2):199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyegaard M, Overgaard MT, Søndergaard MT, et al. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Am J Hum Genet. 2012;91(4):703–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odero A, Bozzani A, De Ferrari GM, et al. Left cardiac sympathetic denervation for the prevention of life-threatening arrhythmias: the surgical supraclavicular approach to cervicothoracic sympathectomy. Heart Rhythm. 2010;7(8):1161–5.

    Article  PubMed  Google Scholar 

  • Pellizzón OA, Kalaizich L, Ptácek LJ, et al. Flecainide suppresses bidirectional ventricular tachycardia and reverses tachycardia-induced cardiomyopathy in Andersen-Tawil syndrome. J Cardiovasc Electrophysiol. 2008;19(1):95–7.

    PubMed  Google Scholar 

  • Pfeufer A, Sanna S, Arking DE, et al. Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat Genet. 2009;41(4):407–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piippo K, Laitinen P, Swan H, et al. Homozygosity for a HERG potassium channel mutation causes a severe form of long QT syndrome: identification of an apparent founder mutation in the Finns. J Am Coll Cardiol. 2000;35(7):1919–25.

    Article  CAS  PubMed  Google Scholar 

  • Pipilas DC, Johnson CN, Webster G, et al. Novel calmodulin mutations associated with congenital long QT syndrome affect calcium current in human cardiomyocytes. Heart Rhythm. 2016;13(10):2012–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Plaster NM, Tawil R, Tristani-Firouzi M, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell. 2001;105(4):511–9.

    Article  CAS  PubMed  Google Scholar 

  • Priori SG, Napolitano C, Schwartz PJ. Low penetrance in the long-QT syndrome: clinical impact. Circulation. 1999;99(4):529–33.

    Article  CAS  PubMed  Google Scholar 

  • Priori SG, Schwartz PJ, Napolitano C, et al. Risk stratification in the long-QT syndrome. N Engl J Med. 2003;348(19):1866–74.

    Article  PubMed  Google Scholar 

  • Priori SG, Napolitano C, Schwartz PJ, et al. Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA. 2004;292(11):1341–4.

    Article  CAS  PubMed  Google Scholar 

  • Priori SG, Pandit SV, Rivolta I, et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res. 2005;96(7):800–7.

    Article  CAS  PubMed  Google Scholar 

  • Priori SG, Wilde AA, Horie M, et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Heart Rhythm. 2013;10(12):1932–63.

    Article  PubMed  Google Scholar 

  • Priori SG, Blomström-Lundqvist C, Mazzanti A, et al. ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015;36:2793–867.

    Article  PubMed  Google Scholar 

  • Quaglini S, Rognoni C, Spazzolini C, et al. Cost-effectiveness of neonatal ECG screening for the long QT syndrome. Eur Heart J. 2006;27(15):1824–32.

    Article  PubMed  Google Scholar 

  • Rashba EJ, Zareba W, Moss AJ, et al. Influence of pregnancy on the risk for cardiac events in patients with hereditary long QT syndrome. Circulation. 1998;97(5):451–6.

    Article  CAS  PubMed  Google Scholar 

  • Reed GJ, Boczek NJ, Etheridge SP, et al. CALM3 mutation associated with long QT syndrome. Heart Rhythm. 2015;12(2):419–22.

    Article  PubMed  Google Scholar 

  • Reichenbach H, Meister EM, Theile H. The heart-hand syndrome. A new variant of disorders of heart conduction and syndactylia including osseous changes in hands and feet. Kinderarztl Prax. 1992;60(2):54–6.

    CAS  PubMed  Google Scholar 

  • Rocchetti M, Sala L, Dreizehnter L, et al. Elucidating the arrhythmogenic mechanism of long QT syndrome caused by the CALM1-F142L mutation using patient-specific induced pluripotent stem cell-derived cardiomyocytes. Cardiovasc Res. 2017;113(5):531–41.

    Article  CAS  PubMed  Google Scholar 

  • Romano C, Gemme G, Pongiglione R. Rare cardiac arrhythmias of the pediatric age. ii. Syncopal attacks due to paroxysmal ventricular fibrillation (presentation of 1st case in italian pediatric literature). Clin Pediatr. 1963;45:656–83.

    CAS  Google Scholar 

  • Ruan Y, Liu N, Bloise R, et al. Gating properties of SCN5A mutations and the response to mexiletine in long-QT syndrome type 3 patients. Circulation. 2007;116(10):1137–44.

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Ciobotaru A, Bopassa JC, et al. Estrogen contributes to gender differences in mouse ventricular repolarization. Circ Res. 2009;105(4):343–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanguinetti MC, Curran ME, Spector PS, et al. Spectrum of HERG K+-channel dysfunction in an inherited cardiac arrhythmia. Proc Natl Acad Sci U S A. 1996a;93(5):2208–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanguinetti MC, Curran ME, Zou A, et al. Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature. 1996b;384(6604):80–3.

    Article  CAS  PubMed  Google Scholar 

  • Sansone V, Tawil R. Management and treatment of Andersen-Tawil syndrome (ATS). Neurotherapeutics. 2007;4(2):233–7.

    Article  CAS  PubMed  Google Scholar 

  • Sansone V, Griggs RC, Meola G, et al. Andersen’s syndrome: a distinct periodic paralysis. Ann Neurol. 1997;42(3):305–12.

    Article  CAS  PubMed  Google Scholar 

  • Saul JP, Schwartz PJ, Ackerman MJ, et al. Rationale and objectives for ECG screening in infancy. Heart Rhythm. 2014;11(12):2316–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schimpf R, Wolpert C, Bianchi F, et al. Congenital short QT syndrome and implantable cardioverter defibrillator treatment: inherent risk for inappropriate shock delivery. J Cardiovasc Electrophysiol. 2003;14(12):1273–7.

    Article  PubMed  Google Scholar 

  • Schimpf R, Wolpert C, Gaita F, et al. Short QT syndrome. Cardiovasc Res. 2005;67(3):357–66.

    Article  CAS  PubMed  Google Scholar 

  • Schulze-Bahr E, Wang Q, Wedekind H, et al. KCNE1 mutations cause Jervell and Lange-Nielsen syndrome. Nat Genet. 1997;17(3):267–8.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ. The idiopathic long QT syndrome: the need for a prospective registry. Eur Heart J. 1983;4(8):529–31.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ. Idiopathic long QT syndrome: progress and questions. Am Heart J. 1985;109(2):399–411.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ. Prevention of the arrhythmias in the long QT syndrome. In: Kulbertus HE, editor. Medical management of cardiac arrhythmias. Edinburgh: Churchill Livingstone; 1986. p. 153–61.

    Google Scholar 

  • Schwartz PJ. Stillbirths, sudden infant deaths, and long-QT syndrome: puzzle or mosaic, the pieces of the Jigsaw are being fitted together. Circulation. 2004;109(24):2930–2.

    Article  PubMed  Google Scholar 

  • Schwartz PJ. Sudden cardiac death, founder populations, and mushrooms: what is the link with gold mines and modifier genes? Heart Rhythm. 2011;8(4):548–50.

    Article  PubMed  Google Scholar 

  • Schwartz PJ. Cardiac sympathetic denervation to prevent life-threatening arrhythmias. Nat Rev Cardiol. 2014;11(6):346–53.

    Article  PubMed  Google Scholar 

  • Schwartz PJ, Ackerman MJ. The long QT syndrome: a transatlantic clinical approach to diagnosis and therapy. Eur Heart J. 2013;34(40):3109–16.

    Article  PubMed  Google Scholar 

  • Schwartz PJ, Crotti L. QTc behavior during exercise and genetic testing for the long-QT syndrome. Circulation. 2011;124(20):2181–4.

    Article  PubMed  Google Scholar 

  • Schwartz PJ, Crotti L. Long QT and short QT syndromes. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. 7th ed. Philadelphia: Elsevier/Saunders; 2017. p. 893–904. ISBN: 9780323447331.

    Google Scholar 

  • Schwartz PJ, Malliani A. Electrical alternation of the T-wave: clinical and experimental evidence of its relationship with the sympathetic nervous system and with the long Q-T syndrome. Am Heart J. 1975;89(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, Moss AJ. Prolonged QT interval: what does it mean? J Cardiovasc Med. 1982;7:1317.

    Google Scholar 

  • Schwartz PJ, Periti M, Malliani A. The long Q-T syndrome. Am Heart J. 1975;89(3):378–90.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, Zaza A, Locati E, et al. Stress and sudden death. The case of the long QT syndrome. Circulation. 1991;83(4 Suppl II):71–80.

    Google Scholar 

  • Schwartz PJ, Moss AJ, Vincent GM, et al. Diagnostic criteria for the long QT syndrome. An update. Circulation. 1993;88(2):782–4.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, Priori SG, Locati EH, et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate: implications for gene-specific therapy. Circulation. 1995;92(12):3381–6.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, Priori SG, Spazzolini C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation. 2001;103(1):89–95.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, Garson A, Paul T, et al. Guidelines for the interpretation of the neonatal electrocardiogram. A task force of the European Society of Cardiology. Eur Heart J. 2002;23(17):1329–44.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, Priori SG, Cerrone M, et al. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation. 2004;109(15):1826–33.

    Article  PubMed  Google Scholar 

  • Schwartz PJ, Spazzolini C, Crotti L, et al. The Jervell and Lange-Nielsen syndrome: natural history, molecular basis, and clinical outcome. Circulation. 2006;113(6):783–90.

    Article  PubMed  Google Scholar 

  • Schwartz PJ, Vanoli E, Crotti L, et al. Neural control of heart rate is an arrhythmia risk modifier in long QT syndrome. J Am Coll Cardiol. 2008;51(9):920–9.

    Article  PubMed  Google Scholar 

  • Schwartz PJ, Spazzolini C, Crotti L. All LQT3 patients need an ICD: true or false? Heart Rhythm. 2009a;6:113–20.

    Article  PubMed  Google Scholar 

  • Schwartz PJ, Stramba-Badiale M, Crotti L, et al. Prevalence of the congenital long-QT syndrome. Circulation. 2009b;120(18):1761–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz PJ, Spazzolini C, Priori SG, et al. Who are the long-QT syndrome patients who receive an implantable cardioverter-defibrillator and what happens to them? Data from the European Long-QT Syndrome Implantable Cardioverter-Defibrillator (LQTS ICD) Registry. Circulation. 2010;122(13):1272–82.

    Article  PubMed  Google Scholar 

  • Schwartz PJ, Crotti L, Insolia R. Long-QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol. 2012;5(4):868–77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seth R, Moss AJ, McNitt S, et al. Long QT syndrome and pregnancy. J Am Coll Cardiol. 2007;49(10):1092–8.

    Article  PubMed  Google Scholar 

  • Shamgar L, Ma L, Schmitt N, et al. Calmodulin is essential for cardiac IKS channel gating and assembly: impaired function in long-QT mutations. Circ Res. 2006;98(8):1055–63.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu W, Tanabe Y, Aiba T, et al. Differential effects of beta-blockade on dispersion of repolarization in the absence and presence of sympathetic stimulation between the LQT1 and LQT2 forms of congenital long QT syndrome. J Am Coll Cardiol. 2002;39(12):1984–91.

    Article  PubMed  Google Scholar 

  • Spazzolini C, Mullally J, Moss AJ, et al. Clinical implications for patients with long QT syndrome who experience a cardiac event during infancy. J Am Coll Cardiol. 2009;54(9):832–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Splawski I, Timothy KW, Vincent GM, et al. Molecular basis of the long-QT syndrome associated with deafness. N Engl J Med. 1997a;336(22):1562–7.

    Article  CAS  PubMed  Google Scholar 

  • Splawski I, Tristani-Firouzi M, Lehmann MH, et al. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet. 1997b;17(3):338–40.

    Article  CAS  PubMed  Google Scholar 

  • Splawski I, Shen J, Timothy KW, et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation. 2000;102(10):1178–85.

    Article  CAS  PubMed  Google Scholar 

  • Splawski I, Timothy KW, Sharpe LM, et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119(1):19–31.

    Article  CAS  PubMed  Google Scholar 

  • Splawski I, Timothy KW, Decher N, et al. Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci U S A. 2005;102(23):8089–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stramba-Badiale M, Spagnolo D, Bosi G, et al. Are gender differences in QTc present at birth? MISNES investigators. Multicenter Italian study on neonatal electrocardiography and sudden infant death syndrome. Am J Cardiol. 1995;75(17):1277–8.

    Article  CAS  PubMed  Google Scholar 

  • Stuhmer W, Conti F, Suzuki H, et al. Structural parts involved in activation and inactivation of the sodium channel. Nature. 1989;339(6226):597–603.

    Article  CAS  PubMed  Google Scholar 

  • Subbiah RN, Gula LJ, Skanes AC, et al. Andersen-Tawil syndrome: management challenges during pregnancy, labor, and delivery. J Cardiovasc Electrophysiol. 2008;19(9):987–9.

    Article  PubMed  Google Scholar 

  • Swan H, Viitasalo M, Piippo K, et al. Sinus node function and ventricular repolarization during exercise stress test in long QT syndrome patients with KvLQT1 and HERG potassium channel defects. J Am Coll Cardiol. 1999;34(3):823–9.

    Article  CAS  PubMed  Google Scholar 

  • Swayne LA, Murphy NP, Asuri S, et al. Novel variant in the ANK2 membrane-binding domain is associated with ankyrin-B syndrome and structural heart disease in a first nations population with a high rate of long QT syndrome. Circ Cardiovasc Genet. 2017;10(1):e001537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sy RW, van der Werf C, Chattha IS, et al. Derivation and validation of a simple exercise-based algorithm for prediction of genetic testing in relatives of LQTS probands. Circulation. 2011;124(20):2187–94.

    Article  PubMed  Google Scholar 

  • Tawil R, Ptacek LJ, Pavlakis SG, et al. Andersen’s syndrome: potassium-sensitive periodic paralysis, ventricular ectopy, and dysmorphic features: Andersen’s syndrome. Ann Neurol. 1994;35(3):326–30.

    Article  CAS  PubMed  Google Scholar 

  • ter Bekke RMA, Haugaa KH, van den Wijngaard A, et al. Electromechanical window negativity in genotyped long-QT syndrome patients: relation to arrhythmia risk. Eur Heart J. 2015;36(3):179–86.

    Article  PubMed  CAS  Google Scholar 

  • Tester DJ, Will ML, Haglund CM, et al. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm. 2005;2(5):507–17.

    Article  PubMed  Google Scholar 

  • Tester DJ, Will ML, Haglund CM, et al. Effect of clinical phenotype on yield of long QT syndrome genetic testing. J Am Coll Cardiol. 2006;47(4):764–8.

    Article  PubMed  Google Scholar 

  • Tomás M, Napolitano C, De Giuli L, et al. Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of arrhythmias in the long QT syndrome. J Am Coll Cardiol. 2010;55(24):2745–52.

    Article  PubMed  CAS  Google Scholar 

  • Tristani-Firouzi M, Jensen JL, Donaldson MR, et al. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest. 2002;110(3):381–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tülümen E, Giustetto C, Wolpert C, et al. PQ segment depression in patients with short QT syndrome: a novel marker for diagnosing short QT syndrome? Heart Rhythm. 2014;11(6):1024–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueda K, Valdivia C, Medeiros-Domingo A, et al. Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex. Proc Natl Acad Sci U S A. 2008;105(27):9355–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vatta M, Ackerman MJ, Ye B, et al. Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation. 2006;114(20):2104–12.

    Article  CAS  PubMed  Google Scholar 

  • Venance SL, Cannon SC, Fialho D, et al. The primary periodic paralyses: diagnosis, pathogenesis and treatment. Brain J Neurol. 2006;129(Pt 1):8–17.

    Article  CAS  Google Scholar 

  • Vetter DE, Mann JR, Wangemann P, et al. Inner ear defects induced by null mutation of the isk gene. Neuron. 1996;17(6):1251–64.

    Article  CAS  PubMed  Google Scholar 

  • Vincent GM, Abildskov JA, Burgess MJ. MJ Q-T interval syndromes. Prog Cardiovasc Dis. 1974;16(6):523–30.

    Article  CAS  PubMed  Google Scholar 

  • Vincent GM, Jaiswal D, Timothy KW. Effects of exercise on heart rate, QT, QTc and QT/QS2 in the Romano-Ward inherited long QT syndrome. Am J Cardiol. 1991;68(5):498–503.

    Article  CAS  PubMed  Google Scholar 

  • Vincent GM, Schwartz PJ, Denjoy I, et al. High efficacy of beta-blockers in long-QT syndrome type 1: contribution of noncompliance and QT-prolonging drugs to the occurrence of beta-blocker treatment ‘failures’. Circulation. 2009;119:215–21.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Shen J, Splawski I, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995;80(5):805–11.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Curran ME, Splawski I, et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet. 1996a;12(1):17–23.

    Article  PubMed  Google Scholar 

  • Wang DW, Yazawa K, George AL Jr, et al. Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome. Proc Natl Acad Sci U S A. 1996b;93(23):13200–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward OC. A new familial cardiac syndrome in children. J Ir Med Assoc. 1964;54:103–6.

    CAS  PubMed  Google Scholar 

  • Watanabe H, Makiyama T, Koyama T, et al. High prevalence of early repolarization in short QT syndrome. Heart Rhythm. 2010;7(5):647–52.

    Article  PubMed  Google Scholar 

  • Westenskow P, Splawski I, Timothy KW, et al. Compound mutations: a common cause of severe long-QT syndrome. Circulation. 2004;109(15):1834–41.

    Article  PubMed  Google Scholar 

  • Wilde AA, Moss AJ, Kaufman ES, et al. Clinical aspects of type 3 long-QT syndrome: an international multicenter study. Circulation. 2016;134(12):872–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolpert C, Schimpf R, Giustetto C, et al. Further insights into the effect of quinidine in short QT syndrome caused by a mutation in HERG. J Cardiovasc Electrophysiol. 2005;16(1):54–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Yang Y, Liang B, et al. Identification of a Kir3.4 mutation in congenital Long QT Syndrome. Am J Hum Genet. 2010;86:872–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanowitz F, Preston JB, Abildskov JA. Functional distribution of right and left stellate innervation to the ventricles. Production of neurogenic electrocardiographic changes by unilateral alteration of sympathetic tone. Circ Res. 1966;18(4):416–28.

    Article  CAS  PubMed  Google Scholar 

  • Yin G, Hassan F, Haroun AR, et al. Arrhythmogenic calmodulin mutations disrupt intracellular cardiomyocyte Ca2+ regulation by distinct mechanisms. J Am Heart Assoc. 2014;3(3):e000996.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoon G, Oberoi S, Tristani-Firouzi M, et al. Andersen-Tawil syndrome: prospective cohort analysis and expansion of the phenotype. Am J Med Genet A. 2006;140A(4):312–21.

    Article  Google Scholar 

  • Zhang L, Vincent GM, Baralle M, et al. An intronic mutation causes long QT syndrome. J Am Coll Cardiol. 2004;44(6):1283–91.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Benson DW, Tristani-Firouzi M, et al. Electrocardiographic features in Andersen-Tawil syndrome patients with KCNJ2 mutations: characteristic T-U-wave patterns predict the KCNJ2 genotype. Circulation. 2005;111(21):2720–6.

    Article  PubMed  Google Scholar 

  • Zühlke RD, Pitt GS, Deisseroth K, et al. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature. 1999;399:159–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lia Crotti .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

LC declares that she has no conflict of interest. MCK declares that she has no conflict of interest. SC declares that she has no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crotti, L., Kotta, MC., Castelletti, S. (2018). Long and Short QT Syndromes. In: Thomas, D., Remme, C. (eds) Channelopathies in Heart Disease . Cardiac and Vascular Biology, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-77812-9_7

Download citation

Publish with us

Policies and ethics