Skip to main content

Targeting Drug Conjugates to the Tumor Microenvironment: Probody Drug Conjugates

  • Chapter
  • First Online:
Innovations for Next-Generation Antibody-Drug Conjugates

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The tolerability and ultimately efficacy of ADCs are limited by 2 major issues: (1) antigen expression that is too low on tumors, resulting in insufficient toxin delivery to the tumor, especially within the confines of the clinical MTD established by linker/payload-driven off-target toxicity and (2) too much antigen expression on normal healthy tissues, resulting in on-target but off-tumor toxicity. In this chapter, we will review strategies for making antibody prodrugs that have been or could be used to selectively deliver drug to a tumor compared to normal tissues. These technologies have the potential to lower on-target, off-tumor toxicities and enable better efficacy of ADCs due to better target selection and the delivery of higher concentrations of drug to tumors.

PROBODY is a trademark of CytomX Therapeutics, Inc. All other brands and trademarks referenced herein are the property of their respective owners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bross PF et al (2001) Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7(6):1490

    CAS  PubMed  Google Scholar 

  2. de Claro RA et al (2012) U.S. Food and Drug Administration approval summary: brentuximab vedotin for the treatment of relapsed Hodgkin lymphoma or relapsed systemic anaplastic large-cell lymphoma. Clin Cancer Res 18(21):5845

    Article  CAS  PubMed  Google Scholar 

  3. Amiri-Kordestani L et al (2014) FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res 20(17):4436

    Article  CAS  PubMed  Google Scholar 

  4. Rowe JM, Lowenberg B (2013) Gemtuzumab ozogamicin in acute myeloid leukemia: a remarkable saga about an active drug. Blood 121(24):4838

    Article  CAS  PubMed  Google Scholar 

  5. Donaghy H (2016) Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs 8(4):659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Goeij BE, Lambert JM (2016) New developments for antibody-drug conjugate-based therapeutic approaches. Curr Opin Immunol 40:14

    Article  CAS  PubMed  Google Scholar 

  7. Saber H, Leighton JK (2015) An FDA oncology analysis of antibody-drug conjugates. Regul Toxicol Pharmacol 71(3):444

    Article  CAS  PubMed  Google Scholar 

  8. Krop IE et al (2010) Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol 28(6):2698

    Article  CAS  PubMed  Google Scholar 

  9. Beck A et al (2017) Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov 16:315

    Article  CAS  PubMed  Google Scholar 

  10. Saleh MN et al (2000) Phase I trial of the anti-Lewis Y drug Immunoconjugate BR96-doxorubicin in patients with Lewis Y-expressing epithelial tumors. J Clin Oncol 18:2282–2292

    Article  CAS  PubMed  Google Scholar 

  11. Tijink BM et al (2006) A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clin Cancer Res 12(20 Pt 1):6064

    Article  CAS  PubMed  Google Scholar 

  12. Annunziata CM et al (2013) Phase 1, open-label study of MEDI-547 in patients with relapsed or refractory solid tumors. Investig New Drugs 31(1):77

    Article  CAS  Google Scholar 

  13. Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49(16):4373

    PubMed  CAS  Google Scholar 

  14. Zhang X et al (2010) Tumor pH and its measurement. J nuclear. Medicine 51:1167

    CAS  Google Scholar 

  15. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891

    Article  CAS  PubMed  Google Scholar 

  16. Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit Cancer cells? Trends Biochem Sci 41(3):211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vander Heiden MG et al (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bhattacharya B et al (2016) The Warburg effect and drug resistance. Br J Pharmacol 173(6):970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sarkar CA et al (2002) Rational cytokine design for increased lifetime and enhanced potency using pH-activated “histidine switching”. Nat Biotechnol 20(9):908

    Article  CAS  PubMed  Google Scholar 

  20. Chaparro-Riggers J et al (2012) Increasing serum half-life and extending cholesterol lowering in vivo by engineering antibody with pH-sensitive binding to PCSK9. J Biol Chem 287:11090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Igawa T et al (2010) Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutralization. Nat Biotechnol 28(11):1203

    Article  CAS  PubMed  Google Scholar 

  22. Huang L et al (2016) Preclinical evaluation of a next-generation, EGFR targeting ADC that promotes regression in KRAS or BRAF mutant tumors. Presented at American Association for Cancer Research Annual Meeting, New Orleans, Louisiana, April 16 - 20, 2016 http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=43ef76fe-c845-4b4b-8531-601f2b1c2c32&cKey=bb5dcf16-e379-432f-a72c-191183729d7b&mKey=%7b1D10D749-4B6A-4AB3-BCD4-F80FB1922267%7d

  23. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785

    Article  CAS  PubMed  Google Scholar 

  24. Kessenbrock K et al (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sevenich L, Joyce JA (2014) Pericellular proteolysis in cancer. Genes Dev 28(21):2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bugge TH et al (2009) Type II transmembrane serine proteases. J Biol Chem 284(35):23177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dass K et al (2008) Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev 34(2):122

    Article  CAS  PubMed  Google Scholar 

  28. Murphy G (2008) The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer 8(12):929

    Article  CAS  PubMed  Google Scholar 

  29. Olson OC, Joyce JA (2015) Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat Rev Cancer 15(12):712

    Article  CAS  PubMed  Google Scholar 

  30. Coussens LM et al (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295(5564):2387

    Article  CAS  PubMed  Google Scholar 

  31. Appleby TC et al (2017) Biochemical characterization and structure determination of a potent, selective antibody inhibitor of human MMP9. J Biol Chem 292(16):6810–6682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marshall DC et al (2015) Selective allosteric inhibition of MMP9 is efficacious in preclinical models of ulcerative colitis and colorectal Cancer. PLoS One 10(5):e0127063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Metz S et al (2012) Bispecific antibody derivatives with restricted binding functionalities that are activated by proteolytic processing. Protein Eng Des Sel 25:571–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Onuoha SC (2015) Rational design of Antirheumatic Prodrugs specific for sites of inflammation. Arthritis Rheumatol 67:2662–2672

    Article  Google Scholar 

  35. Donaldson JM et al (2009) Design and development of masked therapeutic antibodies to limit off-target effects: application to an anti-EGFR antibodies. Cancer Biol Ther 8:2147–2152

    Article  CAS  PubMed  Google Scholar 

  36. Podust VN (2016) Extension of in vivo half-life of biologically active molecules by XTEN protein polymers. J Control Release 240:52–66

    Article  CAS  PubMed  Google Scholar 

  37. Desnoyers LR et al (2013) Tumor-specific activation of an EGFR-targeting Probody enhances therapeutic index. Sci Transl Med 5:207ra144

    Article  CAS  PubMed  Google Scholar 

  38. Polu KR, Lowman HB (2014) Probody therapeutics for targeting antibodies to diseased tissue. Expert Opin Biol Ther 14:1049–1053

    Article  CAS  PubMed  Google Scholar 

  39. Singh S et al (2016) Preclinical development of a probody drug conjugate (PDC) targeting CD71 for the treatment of multiple cancers. Presented at American Association for Cancer Research Annual Meeting, New Orleans, Louisiana, April 16 - 20, 2016. http://cytomx.com/wp-content/uploads/2016/04/Preclinical-Development-of-a-ProbodyTM-Drug-Conjugate-PDC-Targeting-CD71-for-the-Treatment-of-Multiple-Cancers-AACR-2016.pdf

  40. Weaver AY et al (2015) Development of a probody drug conjugate (PDC) targeting CD166 for the treatment of multiple cancers. Presented at AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics Boston, Massachusetts, November 5 - 9, 2015 http://cytomx.com/wp-content/uploads/2015/11/20151104_CD166_AACR_NCI_EORTC_poster_TO_PRINT_FINAL.pdf

  41. Takebe N et al (2014) Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol Ther 141:140–149

    Article  CAS  PubMed  Google Scholar 

  42. Wei P et al (2010) Evaluation of selective gamma-secretase inhibitor PF-03084014 for its antitumor efficacy and gastrointestinal safety to guide optimal clinical trial design. Mol Cancer Ther 9(6):1618–1628

    Article  CAS  PubMed  Google Scholar 

  43. Dumortier A et al (2010) Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of notch signaling in the murine skin. PLoS One 5(2):e9258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sagert J et al (2013) Tumor-specific inhibition of Jagged-dependent notch signaling using a Probody™ Therapeutic. Presented at AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics, Boston, MA, October 19-23, 2013. Mol Cancer Ther 2013;12(11 Suppl):C158

    Google Scholar 

  45. Sagert J et al (2014) Transforming Notch ligands into tumor-antigen targets: a probody-drug conjugate (PDC) targeting Jagged 1 and Jagged 2. Presented at AACR Annual Meeting, San Diego, CA April 5-9, 2014. Cancer Res 2014;74(19 Suppl):Abstract 2665

    Article  Google Scholar 

  46. Weidle UH et al (2010) ALCAM/CD166: cancer-related issues. Cancer Genomics Proteomics 7(5):231–243

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, J., Sagert, J. (2018). Targeting Drug Conjugates to the Tumor Microenvironment: Probody Drug Conjugates. In: Damelin, M. (eds) Innovations for Next-Generation Antibody-Drug Conjugates. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-78154-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78154-9_12

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-78153-2

  • Online ISBN: 978-3-319-78154-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics