Skip to main content

Standards for Conducting Ophthalmic Examinations in Laboratory Animals

  • Chapter
  • First Online:
Standards for Ocular Toxicology and Inflammation

Abstract

Ocular toxicology pertains to toxicological effects on the eye of drugs administered topically, periocularly, intraocularly, or systemically. The ophthalmic examination is able to provide detailed in-life information and is used in combination with clinical observations, clinical pathology, and histopathology to assess potential toxicologic effects. The ophthalmologist must be familiar with the wide range of species used in the field of toxicology, be familiar with the anatomic variations associated with these species, be able to differentiate an inherited or a breed-related finding from a study-related effect, be competent with the required ophthalmic equipment, and be capable of examining this wide range of animals.

Endorsed by the American College of Veterinary Ophthalmologists (ACVO).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Munger RJ, Collins M. Assessing ocular toxicity potential: basic theory and techniques. In: Weir AB, Collins M, editors. Molecular and integrative toxicology: assessing ocular toxicology in laboratroy animals. New York: Humana Press; 2013. p. 23–52.

    Google Scholar 

  2. Novack GD. Ocular toxicology. Curr Opin Ophthalmol. 1994;5:110–4.

    Article  CAS  PubMed  Google Scholar 

  3. Novack GD. Ocular toxicology. Curr Opin Ophthalmol. 1995;6:108–12.

    Article  CAS  PubMed  Google Scholar 

  4. Novack GD. Ocular toxicology. Curr Opin Ophthalmol. 1997;8:88–92.

    Article  CAS  PubMed  Google Scholar 

  5. Santaella RM, Fraunfelder FW. Ocular adverse effects associated with systemic medications: recognition and management. Drugs. 2007;67:75–93.

    Article  CAS  PubMed  Google Scholar 

  6. Bill A. Blood circulation and fluid dynamics in the eye. Physiol Rev. 1975;55:383–417.

    Article  CAS  PubMed  Google Scholar 

  7. Ver Hoeve JN, Munger RJ, Gourley IM, et al. Emerging electrophysiological technologies for assessing ocular toxicity in laboratory animals. In: Weir AB, Collins M, editors. Molecular and integrative toxicology: assessing ocular toxicology in laboratroy animals. New York: Humana Press; 2013. p. 123–57.

    Google Scholar 

  8. Pereira FQ, Bercht BS, Soares MG, et al. Comparison of a rebound and an applanation tonometer for measuring intraocular pressure in normal rabbits. Vet Ophthalmol. 2011;14:321–6.

    Article  PubMed  Google Scholar 

  9. Nork TM, Rasmussen CA, Christian BJ, et al. Emerging imaging technologies for assessing ocular toxicity in laboratory animals. In: Weir AB, Collins M, editors. Molecular and integrative toxicology: assessing ocular toxicology in laboratroy animals. New York: Humana Press; 2013. p. 53–121.

    Google Scholar 

  10. Kontiola AI, Goldblum D, Mittag T, et al. The induction/impact tonometer: a new instrument to measure intraocular pressure in the rat. Exp Eye Res. 2001;73:781–5.

    Article  CAS  PubMed  Google Scholar 

  11. Goldblum D, Kontiola AI, Mittag T, et al. Non-invasive determination of intraocular pressure in the rat eye. Comparison of an electronic tonometer (TonoPen), and a rebound (impact probe) tonometer. Graefes Arch Clin Exp Ophthalmol. 2002;240:942–6.

    Article  PubMed  Google Scholar 

  12. Danias J, Kontiola AI, Filippopoulos T, et al. Method for the noninvasive measurement of intraocular pressure in mice. Investig Ophthalmol Vis Sci. 2003;44:1138–41.

    Article  Google Scholar 

  13. Rowland JM, Potter DE, Reiter RJ. Circadian rhythm in intraocular pressure: a rabbit model. Curr Eye Res. 1981;1:169–73.

    Article  CAS  PubMed  Google Scholar 

  14. Hackett RB, McDonald TO. Ophthalmic toxicology and assessing ocular irritation. In: Marzulli FN, Maibach HI, editors. Dermatotoxicology. 5th ed. Washington, DC: Hemisphere Publishing Corp; 1996. p. 749–815.

    Google Scholar 

  15. DiLoreto D Jr, Grover DA, del Cerro C, et al. A new procedure for fundus photography and fluorescein angiography in small laboratory animal eyes. Curr Eye Res. 1994;13:157–61.

    Article  PubMed  Google Scholar 

  16. Satoh T, Yamaguchi K. Ocular fundus abnormalities detected by fluorescein and indocyanine green angiography in the Royal College of Surgeons dystrophic rat. Exp Anim. 2000;49:275–80.

    Article  CAS  PubMed  Google Scholar 

  17. Herren JI, Kunzelman KS, Vocelka C, et al. Angiographic and histological evaluation of porcine retinal vascular damage and protection with perfluorocarbons after massive air embolism. Stroke. 1998;29:2396–403.

    Article  CAS  PubMed  Google Scholar 

  18. Gelatt KN, Henderson JD, Steffen GR. Fluorescein angiography of the normal and diseased ocular fundi of the laboratory dog. J Am Vet Med Assoc. 1976;169:9.

    Google Scholar 

  19. Ninomiya H, Kuno H, Inagaki S. Vascular changes associated with chorioretinal and optic nerve colobomas in rats (Crj: CD(SD), IGS). Vet Ophthalmol. 2005;8:319–23.

    Article  PubMed  Google Scholar 

  20. Kommonen B, Koskinen L. Fluorescein angiography of the canine ocular fundus in ketamine-xylazine anesthesia. Acta Vet Scand. 1984;25:346–51.

    PubMed  CAS  Google Scholar 

  21. Narfstrom K. Progressive retinal atrophy in the Abyssinian cat. Clinical characteristics. Investig Ophthalmol Vis Sci. 1985;26:193–200.

    CAS  Google Scholar 

  22. Gasthuys F, Pollet L, Simoens P, et al. Anaesthesia for fluorescein angiography of the ocular fundus in the miniature pig. Vet Res Commun. 1990;14:393–402.

    Article  CAS  PubMed  Google Scholar 

  23. Hyvarinen L, Flower RW. Indocyanine green fluorescence angiography. Acta Ophthalmol. 1980;58:528–38.

    Article  CAS  Google Scholar 

  24. Flower RW. Injection technique for indocyanine green and sodium fluorescein dye angiography of the eye. Investig Ophthalmol. 1973;12:881–95.

    CAS  Google Scholar 

  25. Ekesten B, Komaromy AM, Ofri R, et al. Guidelines for clinical electroretinography in the dog: 2012 update. Doc Ophthalmol. 2013;127(2):79–87.

    Article  PubMed  Google Scholar 

  26. Marmor MF, Fulton AB, Holder GE, et al. ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol. 2009;118:69–77.

    Article  CAS  PubMed  Google Scholar 

  27. Fujimoto JG, Pitris C, Boppart SA, et al. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia. 2000;2:9–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gabriele ML, Wollstein G, Ishikawa H, et al. Optical coherence tomography: history, current status, and laboratory work. Investig Ophthalmol Vis Sci. 2011;52:2425–36.

    Article  Google Scholar 

  29. McLellan GJ, Rasmussen CA. Optical coherence tomography for the evaluation of retinal and optic nerve morphology in animal subjects: practical considerations. Vet Ophthalmol. 2012;15(Suppl 2):13–28.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Huber G, Beck SC, Grimm C, et al. Spectral domain optical coherence tomography in mouse models of retinal degeneration. Investig Ophthalmol Vis Sci. 2009;50:5888–95.

    Article  Google Scholar 

  31. Fleckenstein M, Charbel Issa P, Helb HM, et al. High-resolution spectral domain-OCT imaging in geographic atrophy associated with age-related macular degeneration. Investig Ophthalmol Vis Sci. 2008;49:4137–44.

    Article  Google Scholar 

  32. McCarey BE, Edelhauser HF, Lynn MJ. Review of corneal endothelial specular microscopy for FDA clinical trials of refractive procedures, surgical devices, and new intraocular drugs and solutions. Cornea. 2008;27:1–16.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C. Gilger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilkie, D.A., Gilger, B.C., Bartoe, J.T. (2018). Standards for Conducting Ophthalmic Examinations in Laboratory Animals. In: Gilger, B., Cook, C., Brown, M. (eds) Standards for Ocular Toxicology and Inflammation. Springer, Cham. https://doi.org/10.1007/978-3-319-78364-2_1

Download citation

Publish with us

Policies and ethics