Skip to main content

Balanced Random Constraint Satisfaction: Phase Transition and Hardness

  • Conference paper
  • First Online:
Frontiers in Algorithmics (FAW 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10823))

Included in the following conference series:

  • 649 Accesses

Abstract

Two models of nearly balanced random constraint satisfaction problems, called Model NB and UB respectively, are defined in this paper. By nearly balanced it means that most variables appear in the same number of constraints. Exact satisfiability thresholds for these models are proven, which are of the same values as that for Model RB. Experiments on random instances around the thresholds for these three models are conducted. The results show that these balanced models are much harder to solve than their unbalanced counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achlioptas, D., Molloy, M., Kirousis, L., Stamatiou, Y., Kranakis, E., Krizanc, D.: Random constraint satisfaction: a more accurate picture. Constraints 6(4), 329–344 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ansótegui, C., Béjar, R., Fernández, C., Gomes, C.P., Mateu, C.: The impact of balancing on problem hardness in a highly structured domain. In: Proceedings of AAAI, pp. 10–15 (2016)

    Google Scholar 

  3. Ansótegui, C., Béjar, R., Fernández, C., Gomes, C.P., Mateu, C.: Generating highly balanced sudoku problems as hard problems. J. Heuristics 17(5), 589–614 (2011)

    Article  Google Scholar 

  4. Ansótegui, C., Béjar, R., Fernàndez, C., Mateu, C.: On balanced CSPs with high treewidth. In: Proceedings of AAAI, vol. 1, pp. 161–166 (2007)

    Google Scholar 

  5. Bollobás, B.: Random Graphs. Cambridge Studies in Advanced Mathematics (2001)

    Google Scholar 

  6. Cheeseman, P., Kanefsky, R., Taylor, W.: Where the really hard problems are. In: Proceedings of IJCAI, pp. 163–169 (1991)

    Google Scholar 

  7. Cook, S.A., Mitchell, D.G.: Finding hard instances of the satisfiability problem: a survey. In: Proceedings of SAT. DIMACS Series, vol. 35, pp. 1–17 (1997)

    Google Scholar 

  8. Creignou, N., Daudé, H.: Random generalized satisfiability problems. In: Proceedings of SAT, pp. 17–26 (2002)

    Google Scholar 

  9. Creignou, N., Daudé, H.: Generalized satisfiability problems: minimal elements and phase transitions. Theor. Comput. Sci. 302(1–3), 417–430 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Creignou, N., Daudé, H.: Combinatorial sharpness criterion and phase transition classification for random CSPs. Inf. Comput. 190(2), 220–238 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fan, Y., Shen, J.: On the phase transitions of random \(k\)-constraint satisfaction problems. Artif. Intell. 175(3–4), 914–927 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fan, Y., Shen, J., Xu, K.: A general model and thresholds for random constraint satisfaction problems. Artif. Intell. 193, 1–17 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Friedgut, E.: Sharp thresholds of graph properties, and the \(k\)-sat problem. J. Am. Math. Soc. 12, 1017–1054 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedgut, E.: Hunting for sharp thresholds. Random Struct. Algorithms 26(1–2), 37–51 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Frieze, A.M., Molloy, M.: The satisfiability threshold for randomly generated binary constraint satisfaction problems. Random Struct. Algorithms 28(3), 323–339 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao, Y., Culberson, J.: Consitency and random constraint satisfaction problems. J. Artif. Intell. Res. 28, 517–557 (2007)

    MATH  Google Scholar 

  17. Gent, I.P., Macintyre, E., Prosser, P., Smith, B.M.: Random constraint satisfaction: flaws and structure. Constraints 6, 345–372 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gomes, C., Walsh, T.: Randomness and structures. Handbook of Constraint Programming, pp. 639–664 (2006)

    Google Scholar 

  19. Liu, T., Lin, X., Wang, C., Su, K., Xu, K.: Large hinge width on sparse random hypergraphs. In: Proceedings of IJCAI, pp. 611–616 (2011)

    Google Scholar 

  20. Mitchell, D.G., Selman, B., Levesque, H.J. : Hard and easy distributions of SAT problems. In: Proceedings of AAAI, pp. 459–465 (1992)

    Google Scholar 

  21. Molloy, M.: Models for random constraint satisfaction problems. SIAM J. Comput. 32(4), 935–949 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Prosser, P.: An empirical study of phase transitions in binary constraint satisfaction problems. Artif. Intell. 81(1–2), 81–109 (1996)

    Article  MathSciNet  Google Scholar 

  23. Selman, B., Mitchell, D.G., Levesque, H.J.: Generating hard satisfiability problems. Artif. Intell. 81(1–2), 17–29 (1996)

    Article  MathSciNet  Google Scholar 

  24. Smith, B.M., Dyer, M.E.: Locating the phase transition in binary constraint satisfaction problems. Artif. Intell. 81(1–2), 155–181 (1996)

    Article  MathSciNet  Google Scholar 

  25. Smith, B.: Constructing an asymptotic phase transition in random binary constraint satisfaction problems. Theor. Comput. Sci. 265, 265–283 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xu, K.: BHOSLIB: Benchmarks with Hidden Optimum Solutions for Graph Problems. http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm

  27. Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: Random constraint satisfaction: easy generation of hard (satisfiable) instances. Artif. Intell. 171, 514–534 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, K., Li, W.: Exact phase transitions in random constraint satisfaction problems. J. Artif. Intell. Res. 12, 93–103 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Xu, K., Li, W.: Many hard examples in exact phase transitions. Theor. Comput. Sci. 355(3), 291–302 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Prof. Ke Xu for suggestions on doing this work and for many helpful discussions. This work was partially supported by Natural Science Foundation of China (Grant Nos. 61370052 and 61370156) and Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-16-065A1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian Liu or Wei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, T., Wang, C., Xu, W. (2018). Balanced Random Constraint Satisfaction: Phase Transition and Hardness. In: Chen, J., Lu, P. (eds) Frontiers in Algorithmics. FAW 2018. Lecture Notes in Computer Science(), vol 10823. Springer, Cham. https://doi.org/10.1007/978-3-319-78455-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78455-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78454-0

  • Online ISBN: 978-3-319-78455-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics