Skip to main content

The Electroencephalogram as a Biomarker Based on Signal Processing Using Nonlinear Techniques to Detect Dementia

  • Conference paper
  • First Online:
Developments and Advances in Defense and Security (MICRADS 2018)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 94))

Included in the following conference series:

  • 1231 Accesses

Abstract

Dementia being a syndrome caused by a brain disease of a chronic or progressive nature, in which the irreversible loss of intellectual abilities, learning, expressions arises; including memory, thinking, orientation, understanding and adequate communication, of organizing daily life and of leading a family, work and autonomous social life; leads to a state of total dependence; therefore, its early detection and classification is of vital importance in order to serve as clinical support for physicians in the personalization of treatment programs. The use of the electroencephalogram as a tool for obtaining information on the detection of changes in brain activities. This article reviews the types of cognitive spectrum dementia, biomarkers for the detection of dementia, analysis of mental states based on electromagnetic oscillations, signal processing given by the electroencephalogram, review of processing techniques, results obtained where it is proposed the mathematical model about neural networks, discussion and finally the conclusions.

This work was supported by the Universidad de las Fuerzas Armadas, Sangolquí – Ecuador. Luis A. Guerra work at the University of the Fuerzas Armadas at the campus in Latacunga City. Laura C. Lanzarini work at the National University of the Plata – Argentina and Luis E. Sanchez work at the University of the Mancha - Spain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffa, A.: Structural Connectomics in Brain Diseases. Neuroimage. 80, 515–526 (2013)

    Article  Google Scholar 

  2. Sporns, O., Tononi, G., Kötter, R.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1(4), e42 (2005)

    Article  Google Scholar 

  3. Al-Qazzaz, N.K.: Role of EEG as biomarker in the early detection and classification of dementia. Sci. World J. 2014, 16 (2014)

    Article  Google Scholar 

  4. Cedazo-Minguez, A., Winblad, B.: Biomarkers for Alzheimer’s disease and other forms of dementia: clinical needs, limitations and future aspects. Exp. Gerontol. 45(1), 5–14 (2010)

    Article  Google Scholar 

  5. Hampel, H.: Biomarkers for Alzheimer’s Disease: academic, industry and regulatory perspectives. Nat. Rev. Drug Discov. 9(7), 560–574 (2010)

    Article  Google Scholar 

  6. Vialatte, F.B.: Improving the specificity of EEG for diagnosing Alzheimer’s Disease. Int. J. Alzheimer’s Dis. 2011, 7 (2011)

    Google Scholar 

  7. Hampel, H.: Perspective on future role of biological markers in clinical therapy trials of Alzheimer’s disease: a long-range point of view beyond 2020. Biochem. Pharmacol. 88(4), 426–449 (2014)

    Article  Google Scholar 

  8. Borson, S.: Improving dementia care: the role of screening and detection of cognitive impairment. Alzheimer’s Dement. 9(2), 151–159 (2013)

    Article  Google Scholar 

  9. DeKosky, S.T., Marek, K.: Looking backward to move forward: early detection of neurodegenerative disorders. Science 302(5646), 830–834 (2003)

    Article  Google Scholar 

  10. Román, G.C.: Vascular dementia may be the most common form of dementia in the elderly. J. Neurol. Sci. 203, 7–10 (2002)

    Article  Google Scholar 

  11. Thal, D.R., Grinberg, L.T., Attems, J.: Vascular dementia: different forms of vessel disorders contribute to the development of dementia in the elderly brain. Exp. Gerontol. 47(11), 816–824 (2012)

    Article  Google Scholar 

  12. Petersen, R.C.: Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256(3), 183–194 (2004)

    Article  Google Scholar 

  13. Dorval, V., Nelson, P.T., Hébert, S.S.: Circulating MicroRNAs in Alzheimer’s Disease: The Search for Novel Biomarkers. Frontiers in Molecular Neuroscience 6, 24 (2013)

    Google Scholar 

  14. Poil, S.S.: Integrative EEG biomarkers predict progression to Alzheimer’s disease at the MCI stage. Front. Aging Neurosci. 5, 58 (2013)

    Article  Google Scholar 

  15. Mattsson, N.: CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302(4), 385–393 (2009)

    Article  MathSciNet  Google Scholar 

  16. Paraskevas, G.: CSF biomarker profile and diagnostic value in vascular dementia. Eur. J. Neurol. 16(2), 205–211 (2009)

    Article  Google Scholar 

  17. Frankfort, S.V.: Amyloid beta protein and tau in cerebrospinal fluid and plasma as biomarkers for dementia: a review of recent literature. Curr. Clin. Pharmacol. 3(2), 123–131 (2008)

    Article  Google Scholar 

  18. Folin, M.: Apolipoprotein E as vascular risk factor in neurodegenerative dementia. Int. J. Mol. Med. 14, 609–614 (2004)

    Google Scholar 

  19. Schneider, A.L., Jordan, K.G.: Regional attenuation without delta (RAWOD): a disqtinctive EEG pattern that can aid in the diagnosis and management of severe acute ischemic stroke. Am. J. Electroneurodiagn. Technol. 45(2), 102–117 (2005)

    Google Scholar 

  20. Henderson, G.: Development and assessment of methods for detecting dementia using the human electroencephalogram. IEEE Trans. Biomed. Eng. 53(8), 1557–1568 (2006)

    Article  Google Scholar 

  21. Zhao, P., Ifeachor, E.: EEG assessment of Alzheimers diseases using universal compression algorithm. In: Proceedings of the 3rd International Conference on Computational Intelligence in Medicine and Healthcare (CIMED2007), Plymouth, UK, 25 July 2007

    Google Scholar 

  22. Ochoa, J.B.: EEG signal classification for brain computer interface applications. Ec. Polytech. Federale de Lausanne 7, 1–72 (2002)

    Google Scholar 

  23. Guérit, J.: EEG and evoked potentials in the intensive care unit. Neurophysiol. Clin. Clin. Neurophysiol. 29(4), 301–317 (1999)

    Article  Google Scholar 

  24. Moretti, D.: Quantitative EEG markers in mild cognitive impairment: degenerative versus vascular brain impairment. Int. J. Alzheimer’s Dis. 2012, 12 (2012)

    Google Scholar 

  25. Moretti, D.: Vascular damage and EEG markers in subjects with mild cognitive impairment. Clin. Neurophysiol. 118(8), 1866–1876 (2007)

    Article  Google Scholar 

  26. Pizzagalli, D.A.: Electroencephalography and high-density electrophysiological source localization. In: Handbook of Psychophysiology, vol. 3, pp. 56–84 (2007)

    Google Scholar 

  27. John, E.: Developmental equations for the electroencephalogram. Science 210(4475), 1255–1258 (1980)

    Article  Google Scholar 

  28. Jeong, J.: EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 115(7), 1490–1505 (2004)

    Article  Google Scholar 

  29. Taywade, S., Raut, R.: A review: EEG signal analysis with different methodologies. In: Proceedings of the National Conference on Innovative Paradigms in Engineering and Technology (NCIPET 2012) (2014)

    Google Scholar 

  30. Husain, A., Tatum, W., Kaplan, P.: Handbook of EEG Interpretation. Demos Medical, New York (2008)

    Google Scholar 

  31. Punapung, A., Tretriluxana, S., Chitsakul, K.: A design of configurable ECG recorder module. In: Biomedical Engineering International Conference (BMEiCON). IEEE (2012)

    Google Scholar 

  32. Klem, G.H.: The Ten-Twenty Electrode System of the International Federation

    Google Scholar 

  33. Anderson, C.W., Sijercic, Z.: Classification of EEG signals from four subjects during five mental tasks. In: Solving Engineering Problems with Neural Networks: Proceedings of the Conference on Engineering Applications in Neural Networks (EANN 1996), Turkey (1996)

    Google Scholar 

  34. Müller, T.: Selecting relevant electrode positions for classification tasks based on the electro-encephalogram. Med. Biol. Eng. Compu. 38(1), 62–67 (2000)

    Article  Google Scholar 

  35. Sanei, S., Chambers, J.A.: EEG Signal Processing. Wiley, Chichester (2013)

    Google Scholar 

  36. Moretti, D.V.: Individual analysis of EEG frequency and band power in mild Alzheimer’s disease. Clin. Neurophysiol. 115(2), 299–308 (2004)

    Article  Google Scholar 

  37. Jung, T.P.: Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin. Neurophysiol. 111(10), 1745–1758 (2000)

    Article  Google Scholar 

  38. Núñez, I.M.B.: EEG Artifact Detection (2011)

    Google Scholar 

  39. Guerrero-Mosquera, C., Trigueros, A.M., Navia-Vazquez, A.: EEG Signal Processing for Epilepsy, in Epilepsy-Histological, Electroencephalographic and Psychological Aspects, InTech (2012)

    Google Scholar 

  40. Molina, G.N.G.: Direct brain-computer communication through scalp recorded EEG signals. École Polytechnique Fedérale de Lausanne (2004)

    Google Scholar 

  41. Naït-Ali, A.: Advanced Biosignal Processing. Springer Science & Business Media, Berlin (2009)

    Book  Google Scholar 

  42. McKeown, M.: A new method for detecting state changes in the EEG: exploratory application to sleep data. J. Sleep Res. 7(S1), 48–56 (1998)

    Article  Google Scholar 

  43. Zikov, T.: A wavelet based denoising technique for ocular artifact correction of the electroencephalogram. In: Proceedings of the Second Joint Engineering in Medicine and Biology, 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference. IEEE (2002)

    Google Scholar 

  44. Krishnaveni, V.: Removal of ocular artifacts from EEG using adaptive thresholding of wavelet coefficients. J. Neural Eng. 3(4), 338 (2006)

    Article  Google Scholar 

  45. Jahankhani, P., Kodogiannis, V., Revett, K.: EEG signal classification using wavelet feature extraction and neural networks. In: IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing, JVA 2006. IEEE (2006)

    Google Scholar 

  46. Akhtar, M.T., James, C.J.: Focal artifact removal from ongoing EEG–a hybrid approach based on spatially-constrained ICA and wavelet denoising. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009. IEEE (2009)

    Google Scholar 

  47. Inuso, G.: Wavelet-ICA methodology for efficient artifact removal from electroencephalographic recordings. In: International Joint Conference on Neural Networks, IJCNN 2007. IEEE (2007)

    Google Scholar 

  48. Jelles, B.: Global dynamical analysis of the EEG in Alzheimer’s disease: frequency-specific changes of functional interactions. Clin. Neurophysiol. 119(4), 837–841 (2008)

    Article  Google Scholar 

  49. Escudero, J.: Blind source separation to enhance spectral and non-linear features of magnetoencephalogram recordings: application to Alzheimer’s disease. Med. Eng. Phys. 31(7), 872–879 (2009)

    Article  Google Scholar 

  50. Hornero, R.: Spectral and nonlinear analyses of MEG background activity in patients with Alzheimer’s disease. IEEE Trans. Biomed. Eng. 55(6), 1658–1665 (2008)

    Article  Google Scholar 

  51. Markand, O.N.: Organic brain syndromes and dementias. Curr. Pract. Clin. Electroencephalogr. 3, 378–404 (1990)

    Google Scholar 

  52. Dauwels, J., Vialatte, F., Cichocki, A.: Diagnosis of Alzheimer’s disease from EEG signals: where are we standing? Curr. Alzheimer Res. 7(6), 487–505 (2010)

    Article  Google Scholar 

  53. Jeong, J.: Nonlinear dynamics of EEG in Alzheimer’s disease. Drug Dev. Res. 56(2), 57–66 (2002)

    Article  MathSciNet  Google Scholar 

  54. Subha, D.P.: EEG signal analysis: a survey. J. Med. Syst. 34(2), 195–212 (2010)

    Article  Google Scholar 

  55. Abásolo, D.: Analysis of EEG background activity in Alzheimer’s disease patients with lempel-ziv complexity and central tendency measure. Med. Eng. Phys. 28(4), 315–322 (2006)

    Article  Google Scholar 

  56. Escudero, J.: Analysis of electroencephalograms in Alzheimer’s disease patients with multiscale entropy. Physiol. Meas. 27(11), 1091 (2006)

    Article  Google Scholar 

  57. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D 9(1–2), 189–208 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wolf, A.: Determining lyapunov exponents from a time series. Phys. D 16(3), 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  59. Hamadicharef, B.: Performance evaluation and fusion of methods for early detection of Alzheimer disease. In: International Conference on BioMedical Engineering and Informatics, BMEI 2008. IEEE (2008)

    Google Scholar 

  60. Henderson, G.T.: Early Detection of Dementia Using The Human Electroencephalogram (2004)

    Google Scholar 

  61. Ferenets, R.: Comparison of entropy and complexity measures for the assessment of depth of sedation. IEEE Trans. Biomed. Eng. 53(6), 1067–1077 (2006)

    Article  Google Scholar 

  62. Costa, M., Goldberger, A.L., Peng, C.-K.: Multiscale entropy analysis of biological signals. Phys. Rev. E 71(2), 021906 (2005)

    Article  MathSciNet  Google Scholar 

  63. Subasi, A., Gursoy, M.I.: EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 37(12), 8659–8666 (2010)

    Article  Google Scholar 

  64. KavitaMahajan, M., Rajput, M.S.M.: A comparative study of ANN and SVM for EEG classification. Int. J. Eng. Res. Technol. IJERT 1, 1–6 (2012)

    Article  Google Scholar 

  65. Vialatte, F.: Blind source separation and sparse bump modelling of time frequency representation of eeg signals: new tools for early detection of Alzheimer’s disease. In: IEEE Workshop on Machine Learning for Signal Processing. IEEE (2005)

    Google Scholar 

  66. Besserve, M.: Classification methods for ongoing EEG and MEG signals. Biol. Res. 40(4), 415–437 (2007)

    Article  Google Scholar 

  67. Garrett, D.: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 141–144 (2003)

    Article  Google Scholar 

  68. Lehmann, C.: Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG). J. Neurosci. Methods 161(2), 342–350 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Guerra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guerra, L.A., Lanzarini, L.C., Sánchez, L.E. (2018). The Electroencephalogram as a Biomarker Based on Signal Processing Using Nonlinear Techniques to Detect Dementia. In: Rocha, Á., Guarda, T. (eds) Developments and Advances in Defense and Security. MICRADS 2018. Smart Innovation, Systems and Technologies, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-319-78605-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78605-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78604-9

  • Online ISBN: 978-3-319-78605-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics