Skip to main content

Geospatial Technologies in Land Resources Mapping, Monitoring, and Management: An Overview

  • Chapter
  • First Online:
Geospatial Technologies in Land Resources Mapping, Monitoring and Management

Part of the book series: Geotechnologies and the Environment ((GEOTECH,volume 21))

Abstract

Geospatial technologies broadly includes remote sensing, photogrammetry, cartography, geographic information system (GIS), global positioning system (GPS), and information technology (IT). Geospatial technologies deal with the acquisition, storage, processing, production, presentation, and dissemination of geoinformation. Remote sensing technology allows us to observe the earth features from the space, and there are several techniques to differentiate the information collected from remote sensing on land, vegetation, water, etc. GIS is a computer-based system to capture, organise, store, edit, analyse, display, and plot geographically referenced data. GPS allow the surveys to collect the precise locational information and increase the accuracy in mapping and monitoring over the conventional surveying techniques. IT is the use of any computers; storage, networking, and other physical devices; and infrastructure to create, process, store, secure, and exchange all forms of electronic data. The information generated through conventional methods, remote sensing, and GPS techniques could be used effectively to create database in GIS and perform variety of spatial analysis in sustainable management of land resources and generate environment-friendly action plans. Some of the applications of geospatial technologies are digital terrain modeling, geomorphological mapping, soil resource inventory and mapping, soil-landscape modeling, land use/land cover mapping, croplands mapping and monitoring, assessment and monitoring of droughts, soil erosion assessment, mapping and assessment of land degradation, water resource management, watershed management, agricultural land use planning, spatial decision support systems, etc., which have a far-reaching impact on mapping, monitoring, and management of land resources on sustainable basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams CR, Eswaran H (2000) Global land resources in the context of food and environmental security. In: Gawande SP, Bali JS, Das DC, Sarkar TK, Das DK, Narayanaswamy G (eds) Advances in land resources management for the 21st century. Soil Conservation Society of India, New Delhi, pp 35–50

    Google Scholar 

  • Ahmad N, Pandey P (2018) Assessment and monitoring of land degradation using geospatial technology in Bathinda district, Punjab, India. Solid Earth 9(1):75–90

    Article  Google Scholar 

  • Bell JC, Cunningham RL, Havens MW (1994) Soil drainage class probability mapping using a soil-landscape model. Soil Sci Soc Am J 58:464–470

    Article  Google Scholar 

  • Bhat LS (1989) Status report on land system analysis for evaluation of resources at micro level. Discussion paper for the fifth review meeting for NRDMS Project. DST, Govt. of India

    Google Scholar 

  • Biradar CM, Thenkabail PS, Noojipady P, Li Y, Dheeravath V, Turral H, Velpuri M, Gumma MK, Reddy GPO, Cai XL, Xiao X, Schull MA, Alankara AD, Gunasinghe S, Mohideen S (2009) A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing. Int J Appl Earth Obs Geoinf 11:114–129

    Article  Google Scholar 

  • Bocco G, Mendoza M, Velazquez A (2001) Remote sensing and GIS-based regional geomorphological mapping-a tool for land use planning in developing countries. Geomorphology 39:211–219

    Article  Google Scholar 

  • Brabyn L (1997) Classification of macro landforms using GIS. ITC J 97(1):26–40

    Google Scholar 

  • Bunce M, Rosendo S, Brown K (2010) Perceptions of climate change, multiple stressors and livelihoods on marginal African coasts. Environ Dev Sustain 12(3):407–440

    Article  Google Scholar 

  • Burrough PA (1986) Principles of geographical information system for land resource assessment. Monograph on Soil and Land Resource Survey No. 12, Oxford University

    Google Scholar 

  • Burrough PA, McDonell RA (1998) Principles of geographical information systems. Oxford University Press, New York, p 190

    Google Scholar 

  • Charney J, Quirk WJ, Chow SH, Kornfield J (1977) A comparative study of the effects of albedo change on drought in semi-arid regions. J Atmos Sci 34:1366–1385

    Article  Google Scholar 

  • Chattaraj S, Srivastava R, Barthwal AK, Giri JD, Mohekar DS, Reddy GPO, Daripa A, Chatterji S, Singh SK (2017) Semi-automated object-based landform classification modelling in a part of the Deccan Plateau of Central India. Int J Remote Sens 38(17):4855–4867

    Article  Google Scholar 

  • Chi KH, Lee BJ (1994) Extracting potential groundwater area using remotely sensed data and GIS techniques. In: Proceedings of the regional seminar on integrated applications of remote sensing and GIS for Land and Water Resources Management, Bangkok (ES-CAPE), pp 64–69

    Google Scholar 

  • Chorley RJ (1972) Chapter 1: Spatial analysis in geomorphology. In: Chorley RJ (ed) Spatial analysis in geomorphology. Harper and Row Publishers, New York, pp 3–16

    Google Scholar 

  • Coates DR (1958) Quantitative geomorphology of small drainage basins in Southern Indiana, 1st edn. Columbia University, New York

    Google Scholar 

  • Conoscenti C, Maggio CD, Rotigliano E (2008) Soil erosion susceptibility assessment and validation using a geostatistical multivariate approach: a test in Southern Sicily. Nat Hazards 46:287–305

    Article  Google Scholar 

  • CSD (2000) Secretary General’s Report on Land Chapter of Agenda 21 to Commission on Sustainable Development (CSD8, UN, New York 2000). UNCED Agenda 21, Rio de Janeiro, 1992 and UNCCD, Paris, 1994

    Google Scholar 

  • Dabral PP, Baithuri N, Pandey A (2008) Soil erosion assessment in a hilly catchment of North Eastern India using USLE, GIS and remote sensing. Water Resour Manag 22:1783–1798

    Article  Google Scholar 

  • Densham PJ, Goodchild MF (1988) Spatial decision support systems. A research agency. GIS/LIS’ 88 proceeding value 2 Bethesda, Maryland: American Congress on surveying and mapping, November–December 1988

    Google Scholar 

  • Dheeravath V, Thenkabail PS, Chandrakantha G, Noojipady P, Reddy GPO, Biradar CM, Gumma MK, Velpuri M (2010) Irrigated areas of India derived using MODIS 500m time series for the years 2001–2003. ISPRS J Photogramm Remote Sens 65(1):42–59

    Article  Google Scholar 

  • Digital Globe (2015) Remote sensing technology trends and agriculture. White paper, Digital Globe, p 17

    Google Scholar 

  • Dobos E, Micheli E, Baumgardner MF, Biehl L, Helt T (2000) Use of combined digital elevation model and satellite radiometric data for regional soil mapping. Geoderma 97:367–391

    Article  Google Scholar 

  • Dwivedi RS (2001) Soil resource mapping: a remote sensing perspective. Remote Sens Rev 20:89–122

    Article  Google Scholar 

  • Ehlers M, Amer S (1991) Geoinformatics: an integrated approach to acquisition, processing and production of geo-data. In: Proceedings, EGIS’91, Brussels, Belgium, pp 306–312

    Google Scholar 

  • Eswaran H, Lal R, Reich PF (2001) Land degradation: an overview. In: Bridges EM, Hannam ID, Oldeman LR, Pening de Vries FWT, Scherr SJ, Sompatpanit S (eds) Responses to land degradation. Proceedings of the 2nd international conference on land degradation and desertification, Khon Kaen, Thailand. Oxford Press, New Delhi, India

    Google Scholar 

  • Evans IS (1972) General geomorphometry, derivatives of altitude and descriptive statistics. In: Chorley RJ (ed) Spatial analysis in geomorphology. Methuen, London, pp 17–90

    Google Scholar 

  • FAO (1976) A framework for land evaluation, FAO soils bulletin 32. FAO, Rome

    Google Scholar 

  • FAO (1995) Land and water bulletin 2, planning for sustainable use of land resources: towards a new approach. FAO, Rome

    Google Scholar 

  • FAO (2010a) Climate-smart agriculture: Policies, practices and financing for food security, adaptation, and mitigation. Rome: FAO

    Google Scholar 

  • FAO (2010b). Climate-smart agriculture. Press release. 28 October 2010. Rome

    Google Scholar 

  • Gessler PE, Morre ID, McKenzie NJ, Ryan PJ (1995) Soil-landscape modelling and spatial pridiction of soil attributes. Int J Geogr Inf Syst 9:421–432

    Article  Google Scholar 

  • Gournellos T, Evelpidou N, Vassilopoulos A (2004) Developing an erosion risk map using soft computing methods (case study at Sifnos Island). Nat Hazards 31:63–83

    Article  Google Scholar 

  • Groot R (1989) Meeting educational requirements in Geomatics. ITC J 1:1–4

    Google Scholar 

  • Hendrix WG, Buckley DJA (1989). Geographic information system technology as a tool for groundwater management. In: Proceedings of the annual convention of ACSM-ASPRS, Falls Church, Virginia, pp 230–239

    Google Scholar 

  • Hengl T, Reuter HI (eds) (2009). Geomorphometry: concept, software, applications. Developments in Soil Science, 33. Elsevier Science

    Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370

    Google Scholar 

  • Jafari R, Lewis MM, Ostendorf B (2008) An image-based diversity for assessing land degradation in an arid environment in South Australia. J Arid Environ 72:1282–1293

    Article  Google Scholar 

  • Jain MK, Kothari UC (2000) Estimation of soil erosion and sediment yield using GIS. Hydrol Sci J 45(5):771–786

    Article  Google Scholar 

  • Kamble B, Irmak A, Hubbard K (2013) Estimating crop coefficients using remote sensing based vegetation index. Remote Sens 5(4):1588–1602

    Article  Google Scholar 

  • Kar R, Reddy GPO, Kumar N, Singh SK (2018) Monitoring spatio-temporal dynamics of urban and peri-urban landscape using remote sensing and GIS – a case study from Central India. Egypt J Remote Sens Space Sci. https://doi.org/10.1016/j.ejrs.2017.12.006

  • Krishnamurthy J, Kumar Venkates N, Jayaraman V, Manivel M (1996) An approach to demarcate groundwater potential zones through remote sensing and a geographic information system. Int J Remote Sens 17(10):1867–1884

    Article  Google Scholar 

  • Kumar N, Reddy GPO, Chatterji S, Srivastava R, Singh SK (2017) Soil suitability evaluation for soybean using temporal satellite data and field data – a case study from semi-arid region of Central India. In: Reddy GPO, Patil NG, Chaturvedi A (eds) Sustainable management of land resources – an Indian perspective. Apple Academic Press, Oakville/Waretown, pp 387–410

    Chapter  Google Scholar 

  • Laurent R, Anker W, Graillot D (1998) Spatial modeling with geographic information system for determination of water resources vulnerability application to an area in Massif Central (France). J Am Water Resour Assoc 34(1):123–134

    Article  Google Scholar 

  • Li Z, Zhu Q, Gold C (2005) Digital terrain modeling: principles and methodology. CRC Press, Boca Raton

    Google Scholar 

  • Maji AK, Nayak DC, Krishna NDR, Srinivas CV, Kamble K, Reddy GPO, Velayutham M (2001) Soil information system of Arunachal Pradesh in a GIS environment for land use planning. Int J Appl Earth Obs Geoinf 3:69–77

    Article  Google Scholar 

  • Maji AK, Reddy GPO, Sarkar D (2010) Degraded and wastelands of India, status and spatial distribution. ICAR and NAAS Publication, pp 1–158

    Google Scholar 

  • McBratney AB, Odeh IOA, Bishop TFA, Dundar MS, Shatar TM (2000) An overview of pedometric techniques for use in soil survey. Geoderma 97:293–327

    Article  Google Scholar 

  • Mendicino G (1999) Sensitivity analysis on GIS procedures for the estimate of soil erosion risk. Nat Hazards 20:231–253

    Article  Google Scholar 

  • Miller JC (1953) A quantitative geomorphic study of drainage basin characteristics in the cinch mountain area. Virginia and Tennessee Technical Report 3

    Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1993) Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. In: Beven KJ, Moore ID (eds) Terrain analysis and distributed modeling in hydrology, advances in hydrological processes, Wiley, Chichester

    Google Scholar 

  • Morton JF (2007) The impact of climate change on smallholder and subsistence agriculture. PNAS 104:19680–19685

    Article  Google Scholar 

  • Naidu LGK, Ramamurthy V, Challa O, Hegde R, Krishnan P (2006) Manual on soil site suitability criteria for major crops. NBBS Publication No. 129, NBSS and LUP, Nagpur, pp 1–3

    Google Scholar 

  • NBSS&LUP (1994) Proceedings of the National meet on soil-site suitability criteria for different crops, February 7–8, held at NBSS&LUP (ICAR), Nagpur

    Google Scholar 

  • Ostir K, Veljanovski T, Podobnikar T, Stancic Z (2003) Application of satellite remote sensing in natural hazard management: the Mount Mangart landslide case study. Int J Remote Sens 24(20):3983–4002

    Article  Google Scholar 

  • Pickup G (1989) New land degradation survey techniques for arid Australia: problems and prospects. Aust Rangeland J 11:74–82

    Article  Google Scholar 

  • Pike RR (1988) The geometric signature – quantifying landslide terrain types from digital elevation models. Math Geol 20(5):491–511

    Article  Google Scholar 

  • Pike RJ (1999) A bibliography of geomorphometry, the quantitative representation of topography-supplement 3 (Open-file report 99-140). US Geological Survey

    Google Scholar 

  • Ramamurthy V, Sarkar D (2009) Soil based agro technologies for livelihood improvement. NBSS Publ. No. 144, NBSS&LUP, Nagpur, 44 p

    Google Scholar 

  • Ramamurthy V, Gajbhiye KS, Lal S, Maji AK (2006) Land resource management through technology assessment and refinement. NBSS Publ. No.133, NBSS&LUP, Nagpur, 106 p

    Google Scholar 

  • Ramamurthy V, Naidu LGK, Nair KM, Ramesh Kumar SC, Srinivas S, Thayalan S, Sarkar D, Chaturvedi A, Singh SK (2015) District land use planning, Mysore, Karnataka. NBSS Publ. No.169, 95 pp

    Google Scholar 

  • Razali SM, Nuruddin AA (2011) Assessment of water content using remote sensing normalized difference water index: preliminary study. In: Proceedings of the 2011 I.E. international conference on space science and communication (IconSpace), pp 265–268

    Google Scholar 

  • Reddy GPO, Maji AK (2003) Delineation and characterization of geomorphological features in a part of lower Maharahstra metamorphic plateau, using IRS-ID LISS-III data. J Indian Soc Remote Sens 31(4):241–250

    Article  Google Scholar 

  • Reddy GPO, Rao MS (1994) Hydro-geology and hydro-geomorphological conditions of Anantapur district (AP), India. Indian Geogr J 69(2):128–135

    Google Scholar 

  • Reddy GPO, Sarkar D (2012) Assessment of soil loss for prioritization of subwatersheds – a remote sensing and GIS approach. NBSS Publ. No.137. NBSS&LUP, Nagpur, p 55

    Google Scholar 

  • Reddy GPO, Chandramouli K, Srivastav SK, Maji AK, Srinivas C (1999a) Evaluation of groundwater potential zones using remote sensing data – a case study. J Indian Soc Remote Sens 28(1):19–32

    Article  Google Scholar 

  • Reddy GPO, Shekinah DE, Maurya UK, Thayalan S, Prasad J, Ray SK, Bhaskar BP (1999b) Landscape-soil relationship in part of Bazargaon plateau, Maharashtra. Geogr Rev 63(3):280–291

    Google Scholar 

  • Reddy GPO, Maji AK, Krishna NDR, Srinivas CV, Velayutham M (2001) Integrated remote and GIS approach for delineation of groundwater potential zones and identification of sites for artificial recharge – a case study. In: Muralikrishna IV (ed) Spatial information technology (remote sensing and geographical information systems), vol I. BSP Publications, Hyderabad, pp 649–658

    Google Scholar 

  • Reddy GPO, Maji AK, Gajbhiye KS (2002a) GIS for morphometric analysis of drainage basins. GIS India 11(4):9–14

    Google Scholar 

  • Reddy GPO, Maji AK, Srinivas CV, Velayutham M (2002b) Geomorphological analysis for inventory of degraded lands in a river basin of basaltic terrain, using remote sensing data and geographical information systems. J Indian Soc Remote Sens 30:15–31

    Article  Google Scholar 

  • Reddy GPO, Maji AK, Gajbhiye KS (2004a) Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India – a remote sensing and GIS approach. Int J Appl Earth Obs Geoinf 6:1–16

    Article  Google Scholar 

  • Reddy GPO, Maji AK, Chary GR, Srinivas CV, Tiwary P, Gajbhiye KS (2004b) GIS and remote sensing applications in prioritization of river sub basins using morphometric and USLE parameters – a case study. Asian J Geoinf 4(4):35–49

    Google Scholar 

  • Reddy GPO, Maji AK, Nagaraju MSS, Thayalan S, Ramamurthy V (2008) Ecological evaluation of land resources and land use systems for sustainable development at watershed level in different agro-ecological zones of Vidarbha region, Maharashtra using remote sensing and GIS techniques. Project Report, NBSS & LUP, Nagpur, pp 270

    Google Scholar 

  • Reddy GPO, Dheeravath V, Thenkabail PS, Chandrakantha G, Biradar CM, Noojipady P, Velpuri M, Maji AK (2009) Irrigated areas of India derived from satellite sensors and national statistics – a way forward from GIAM experience. In: Thenkabail PS, Lyon JG, Hugh T, Biradar CM (eds) Remote sensing of global croplands for food security. CRC Press, London, pp 139–176

    Google Scholar 

  • Reddy GPO, Maji AK, Das SN, Srivastava R (2012) Development of GIS based seamless mosaic of SRTM elevation data of India to analyze and characterize the selected geomorphic parameters. Project Report, NBSS&LUP, Nagpur, 54p

    Google Scholar 

  • Reddy GPO, Nagaraju MSS, Ramteke IK, Sarkar D (2013) Terrain characterization for soil resource mapping in part of semi-tract of Central India using high resolution satellite data and GIS. J Indian Soc Remote Sens 41(2):331–343

    Article  Google Scholar 

  • Reddy GPO, Sarkar D, Prasad J, Ramamurthy V (2013a) Geospatial modeling in assessment of biophysical resources for sustainable land resource management. Trop Ecol 54(2):227–238

    Google Scholar 

  • Reddy GPO, Kurothe RS, Sena DR, Harindranath CS, Niranjana KV, Naidu LGK, Singh SK, Sarkar D, Mishra PK, Sharda VN (2016a) Assessment of soil erosion in tropical ecosystem of Goa, India using universal soil loss equation, geostatistics and GIS. Indian J Soil Conserv 44(1):1–7

    Google Scholar 

  • Reddy GPO, Sarkar D, Mandal C, Srivastava R, Bhattacharyya T, Naidu LGK, Sidhu GS, Baruah U, Singh SK, Singh RS, Nair KM, Sen TK, Chandran P, Sahoo AK, Srinivas S, Kumar N, Chavan S (2016b) Digital soil resource database and information system. In: Roy PS, Dwivedi RS (eds) Geospatial technology for integrated natural resources management. Yes Dee Publishing Pvt Ltd, Chennai, pp 370–406

    Google Scholar 

  • Reddy GPO, Patil NG, Chaturvedi A (eds) (2017a) Sustainable management of land resources – an Indian perspective. Apple Academic Press, Oakvile/Waretown, pp 769

    Google Scholar 

  • Reddy GPO, Singh SK, Kumar N, Mondal C, Srivastava R, Maji AK, Sarkar D (2017b) Geospatial technologies in development of soil information system and prototype geoportal. In: Reddy GPO, Patil NG, Chaturvedi A (eds) Sustainable management of land resources – an Indian perspective. Apple Academic Press, Oakvile/Waretown, pp 411–442

    Chapter  Google Scholar 

  • Renard KG, Foster GR, Weesies GA, Porter JP (1991) RUSLE, revised universal soil loss equation. J Soil Water Conserv 46(1):30–33

    Google Scholar 

  • Riquier J, Cornet JP, Braniao DL (1970) A new system of soil appraisal in terms of actual and potential productivity. 1st Approx. World Soil Res. FAO, pp 44

    Google Scholar 

  • Rojas O, Vrieling A, Rembold F (2011) Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sens Environ 115:343–352

    Article  Google Scholar 

  • Rundquist DC, Peters AJ, Di L, Rodekohr DA, Ehram RL, Murray G (1991) Statewide groundwater vulnerability assessment in Nebraska using the DRASTIC/GIS model. Geocarto Int 6(2):51–57

    Article  Google Scholar 

  • Saraf AK, Choudhuray PR (1998) Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. Int J Remote Sens 19(10):1825–1841

    Article  Google Scholar 

  • Srinivas CV, Maji AK, Reddy GPO, Chary GR (2002) Assessment of soil erosion using remote sensing and GIS in Nagpur District, Maharashtra, for prioritization and delineation of conservation units. J Indian Soc Remote Sens 30(4):197–211

    Article  Google Scholar 

  • Srivastava R, Saxena RK (2004) Techniques of large-scale soil mapping in basaltic terrain using satellite remote sensing data. Int J Remote Sens 25(4):679–688

    Article  Google Scholar 

  • Storie RE (1978) Storie index soil rating (revised). Special publication division of agricultural science. University of California, Berkeley

    Google Scholar 

  • Sudhakar S, Sridevi G, Ramana IV, Rao VV, Raha AK (2000) Techniques of classification for land use/land cover with special reference to forest type mapping in Jaldapara Wildlife Sanctuary, Jalpaiguri district, West Bengal – a case study. J Indian Soc Remote Sens 27(4):217–224

    Article  Google Scholar 

  • Sys C (1985) Land evaluation. Algemeen Bestuur vande Ontwikkelingss. International Training Centre for Post-Graduate Soil Scientists. State University of Ghent, Ghent

    Google Scholar 

  • Sys C, Van Ranst E, Debaveye J (1991) Land evaluation. Part I: Principles in land evaluation and crop production calculations. General Administration for Development Cooperation. Agric. Publ. No. 7

    Google Scholar 

  • Thenkabail PS, Dheeravath V, Biradar CM, Reddy GPO, Noojipady P, Chandrakantha G, Velpuri M, Gumma MK, Li Y (2009) Irrigated area maps and statistics of India using remote sensing and national statistics. Remote Sens 1(2):50–67

    Article  Google Scholar 

  • Tian YC, Zhou YM, Wu BF, Zhou WF (2008) Risk assessment of water soil erosion in upper basin of Miyun Reservoir, Beijing, China. Environ Geol 57(4):937–942

    Article  Google Scholar 

  • Tueller PT (1987) Remote sensing science applications in arid environment. Remote Sens Environ 23:143–154

    Article  Google Scholar 

  • Vinciková H, Hais M, Brom J, Procházka J, Pecharová E (2010) Use of remote sensing methods in studying agricultural landscapes – a review. J Lands Stud 3:53–63

    Google Scholar 

  • Vishakha D, Maji AK, Reddy GPO, Ramteke IK (2016) Land suitability evaluation for rice (Oryza sativa L.) in Tirora tehsil of Gondia District, Maharashtra – a GIS approach. Agropedology 26(01):69–78

    Google Scholar 

  • Watkins DW, Mckinney DC, Maidment DR, Lin MD (1996) Use of geographic information system in groundwater flow modeling. J Water Resour Plan Manag 122(2):88–96

    Article  Google Scholar 

  • Wilson DJ, Gallant JC (2000a) Digital terrain analysis. In: Wilson DJ, Gallant JC (eds) Terrain analysis: principles and applications. Willey, New York, pp 1–27

    Google Scholar 

  • Wilson PJ, Gallant JC (2000b) Secondary topographic attributes. In: Wilson PJ, Gallant JC (eds) Terrain analysis: principles and applications. Willey, New York, pp 87–131

    Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses – a guide to conservation planning. USDA Agricultural Handbook No. 587

    Google Scholar 

  • Wu Q, Wang M (2007) A framework for risk assessment on soil erosion by water using an integrated and systematic approach. J Hydrol 337:11–21

    Article  Google Scholar 

  • Xue Y, Fennessy MD (2002) Under what conditions does land cover change impact regional climate? In: Reynolds JF, Smith DMS (eds) Under what conditions does land cover change impact regional climate? Dahlem University Press, Berlin, pp 59–74

    Google Scholar 

  • Yagi K, Agus F, Arao T, Aulakh MS, Bai Z, Carating R, Jung K, Kadono A, Kawahigashi M, Lee SH, Ma L, Reddy GPO, Sidhu GS, Takata Y, Tien TM, Xu R, Yan X, Yokoyama K, Zhang F, Zhou D (2015) In: Regional assessment of soil changes in Asia. Status of the World’s Soil Resources–Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy, pp 287–329

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reddy, G.P.O. (2018). Geospatial Technologies in Land Resources Mapping, Monitoring, and Management: An Overview. In: Reddy, G., Singh, S. (eds) Geospatial Technologies in Land Resources Mapping, Monitoring and Management. Geotechnologies and the Environment, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-78711-4_1

Download citation

Publish with us

Policies and ethics