Skip to main content

Neuroimaging of Pain

  • Chapter
  • First Online:
The Neuroimaging of Brain Diseases

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 1453 Accesses

Abstract

Advanced neuroimaging techniques (fMRI, PET, and MEG) have led to the identification of a set of neural networks jointly and dynamically recruited during pain processing. These techniques allow also to better characterize cerebral anatomo-functional impairments underlying chronic pain. If a “pain matrix” (PM) was characterized as the first encephalic circuit processing location and intensity of nociceptive afferents, it turns out that several potentially collaborative networks underlie specific vegetative, motor, emotional, motivational, mnesic, and executive aspects of the integrated painful experience. In other words, all brain areas engaged in pain sensation do not belong to a unique, well-delineated pain-specific network but represent a “pain signature” across distinct networks (Tracey and Mantyh Neuron 55: 377–391, 2007). In this vein, if activation of the PM is always elicited either by nociceptive stimuli or by (pathological) endogenous mechanisms, placebo, hypnosis, or empathy can be accompanied by activity in PM and pain-recruited networks. Structural, functional, and metabolic neuroimaging has shed light on neuroplastic aberrant reshaping of large-scale circuits underlying chronic pain. Furthermore, specific areas of PM and associated pain modulatory networks, which are well-delineated by fMRI, can be targeted by several noninvasive brain stimulation methods, such as transcranial direct current stimulation (tDCS) or transcranial magnetic stimulation (TMS), in order to alleviate pain symptoms, as well as real-time fMRI-based neurofeedback.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garcia L, Peyron R (2013) Pain matrices and neuropathic pain matrices : a review. Pain., elsevier 154(Suppl 1):S29–S43

    Google Scholar 

  2. Baliki MN, Geha PY, Apkarian AV (2009) Parsing pain perception between nociceptive representation and magnitude estimation. J Neurophysiol 101(2):875–887

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol Clin 30:263–288

    CAS  PubMed  Google Scholar 

  4. Vogt BA, Derbyshire S, Jones AKP (1996) Pain processing in four regions of human cingulate cortex localized with coregistered PET and fMRI imaging. Eur J Neurosci 8:1461–1473

    CAS  PubMed  Google Scholar 

  5. Peyron R, Garcia-Larrea L, Gregoire MC, Costes N, Converts P, Lavenne F, Maugière F, Michel D, Laurent B (1999) Haemodynamic brain responses to acute pain in humans : sensory and attentional networks. Brain 122(9):1765–1780

    PubMed  Google Scholar 

  6. Craig AD (2009) How do you feel-now ? The anterior insula and human awareness. Nat Rev Neurosci 10(1):59–70

    CAS  PubMed  Google Scholar 

  7. Ploner M, Lee MC, Wiech K, Bingel U, Tracey I (2010) Prestimulus functional connectivity determines pain perception in humans. PNAS 107(1):355–360

    CAS  PubMed  Google Scholar 

  8. Mouraux A, Diukova A, Lee MC, Wise RG, Lannetti GD (2011) A multisensory investigation of the functional significance of the « pain matrix». NeuroImage 54:2237–2249

    PubMed  Google Scholar 

  9. Wiech K, Lin C-S, Brodersen KH, Bingel U, Ploner M, Tracey I (2010) Anterior insula integrates information about salience into perceptual decisions of pain. J Neurosci 30(48):16324–16331

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Neugebauer V, Li W, Bird GC, Han JS (2004) The amygdala and persistent pain. Neuroscientist 10:221–234

    PubMed  Google Scholar 

  11. Benuzzi F, Lui F, Duzzi D, Nichelli PF, Porro CA (2008) Does it look painful or disgusting ? Ask your parietal and cingulate cortex. J Neurosci 28(4):923–931

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bingel U, Quante M, Knab R, Bromm B, Weiller C, Büchel C (2002) Subcortical structures involved in pain processing : evidence from single-trial fMRI. Pain 1(2):313–321

    Google Scholar 

  13. Atlas LY, Bolger N, Lindquist MA, Wager T (2010) Brain mediators of predictive cue effects on perceived pain. J Neurosci 30(39):12964–12977

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Baliki MN, Geha PY, Fileds HL, Apkarian AV (2010) Predicting value of pain and analgesia : nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron:66. https://doi.org/10.1371/journal.pone.0106133

  15. Moulton EA, Schmahmann JD, Becerra L, Borsook D (2010) The cerebellum and pain : passive integrator or active participator. Brain Res Rev 65(1):14–27

    PubMed  PubMed Central  Google Scholar 

  16. Helmchen C, Mohr C, Erdmann C, Petersen D, Nitschke MF (2003) Differential cerebellar activation related to perceived pain intensity during noxious thermal stimulation in humans : a functional magnetic resonance imaging study. Neurosci Lett 335(3):202–206

    CAS  PubMed  Google Scholar 

  17. Mclver TA, Kornelsen J, Stroman PW (2017) Diversity in the emotional modulation of pain perception : an account of individual variability. Eur J Pain. Version of Record online: 20 SEP 2017. https://doi.org/10.1002/ejp.1122

  18. Bantick SJ, Wise RG, Ploghaus A, Clare S, Smith SM, Tracey I (2002) Imaging how attention modulates pain in humans using functional MRI. Brain 125(2):310–319

    PubMed  Google Scholar 

  19. Valet M, Sprenger T, Boeker H, Willoch F, Rummeny E, Conrad B, Erhard P, Tolle TR (2004) Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain-an fMRI analysis. Pain 109(3):399–408

    PubMed  Google Scholar 

  20. Lorenz J, Minoshima S, Casey KL (2003) Keeping pain out of mind : the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126(5):1079–1091

    CAS  PubMed  Google Scholar 

  21. Wiech K, Kalisch R, Weiskopf N, Pleger B, Stephan KE, Dolan RJ (2006) Anterolateral prefrontal cortex mediates the analgesic effect of expected and perceived control over pain. J Neurosci 26(44):11506–11509

    Google Scholar 

  22. Bräscher A-K, Becker S, Hoeppllo M-E, Schweinhardt P (2016) Different brain circuitries mediating controllable and uncontrollable pain. J Neurosci 36(18):5013–5025

    PubMed  PubMed Central  Google Scholar 

  23. Fairhurst M, Wiech K, Duncley P, Tracey I (2007) Anticipatory brainstem activity predicts neural processing of pain in humans. Pain 128(1–2):101–110

    PubMed  Google Scholar 

  24. Stroman PW, Khan HS, Bosma RL, Cotoi AI, Leung RL, Cadotte DW, Fehlings MG (2016) Changes in pain processing in the spinal cord and brainstem after injury characterized by functional magnetic resonance imaging. J Neurotrauma 33:1450–1460

    PubMed  Google Scholar 

  25. Tracey I (2010) Getting the pain you expect : mechanisms of placebo, nocebo and reappraisal effects in human. Nat Med 16(11):1277–1283

    CAS  PubMed  Google Scholar 

  26. Wagner TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, Kosslyn SM, Rose RM, Cohen JD (2004) Placebo-induced changes in fMRI in the anticipation and experience of pain. Science 303:1163–1166

    Google Scholar 

  27. Eckert MA, Menon V, Walczak A, Ahlstrom J, Denslow S, Horwitz A, Dubno JR (2009) At the heart of the ventral attention system : the right anterior insula. Hum Brain Mapp 30(8):2530–2541

    PubMed  Google Scholar 

  28. Loggia ML, Kim J, Gollub RL, Vangel MG, Kirsch J, Wasan AD, Napadow V (2013) Default mode network connectivity encodes clinical pain : an arterial spin labeling study. Pain 154(1):24–33

    PubMed  Google Scholar 

  29. Taylor KS, Seminowicz DA, Davis KD (2009) Two systems of resting state connectivity between the insula and cingulate cortex. Hum Brain Mapp 30:2731–2745

    PubMed  Google Scholar 

  30. Uddin LQ (2014) Salience processing and insular cortical function and dysfunction. Nat Neurosci 16(1):55–61

    Google Scholar 

  31. Seminowicz DA, Moayedi M (2017) The dorsolateral prefrontal cortex in acute and chronic pain. J Pain 18(9):1027–1035

    Google Scholar 

  32. Menon V, Uddin LQ (2010) Saliency, switching, attention and control : a network model of insula function. Brain Struct Funct 214(5–6):655–667

    PubMed  PubMed Central  Google Scholar 

  33. Lee MC, Tracey I (2013) Imaging pain : a potent means for investigating pain mechanisms in patients. Br J Anaesth 111(1):64–72

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Akaparian AV, Hashmi JA, Baliki MN (2011) Pain and the brain : specificity of the brain in clinical chronic pain. Pain 152(3 Suppl):S49–S64

    Google Scholar 

  35. Schmidt-Wilcke T (2015) Neuroimaging of chronic pain. Best Pract Res Clin Rheumatol 29:29–41

    PubMed  Google Scholar 

  36. Apkarian AV, Baliki MN, Geha PY (2009) Towards a theory of chronic pain. Prog Neurobiol 87(2):81–97

    PubMed  Google Scholar 

  37. Tracey I, Mantyh PW (2007) The cerebral signature for pain perception and its modulation. Neuron 55(3):377–391

    CAS  PubMed  Google Scholar 

  38. Baliki MN, Chialvo DR, Geha PY, Levy RM, Harden LR, Parrish TB, Apkarian AV (2006) Chronic pain and emotional brain : specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 22(47):12165–12173

    Google Scholar 

  39. Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, Gitelman DR (2004) Chronic back pain associated with decreased prefrontal and thalamic grey matter density. J Neurosci 24:10410–10415

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Baliki MN, Petre B, Torbey S, Herrmann KM, Huang L, Schnitzer TJ, Fields HL, Apkarian AV (2012) Corticostriatal functional connectivity predicts transition to chronic back pain. Nat Neurosci 15(8):1117–1119

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Baliki MN, Geha PY, Apkarian VA, Chialvo DR (2008) Beyond feeling : chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 28(6):1398–1403

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Baliki MN, Mansour AR, Baria AT, Apkarian AV (2014) Functional reorganization of the default mode network across chronic pain conditions. PLoS. https://doi.org/10.1371/journal.pone.0106133

  43. Kucyi A, Moayedi M, Weissman-Fogel I, Goldberg MB, Freeman BV, Tenenbaum HC, Davis KD (2014) Enhanced medial prefrontal-default mode network functional connectivity in chronic pain and its association within pain rumination. J Neurosci 34(11):3969–3975

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Otti A, Guendel H, Wohlschläger A, Zimmer C, Noll-Hussong M (2013) Frequency shifts in the anterior default mode network and the salience network in chronic pain. BMC Psychiatry 13:84

    PubMed  PubMed Central  Google Scholar 

  45. Kim J-Y, Kim S-H, Seo J, Kim S-H, Han SW, Nam EJ, Kim S-K, Lee HJ, Lee S-J, Kim Y-T, Chang Y (2013) Increased power spectral density in resting-state pain related brain networks in fibromyalgia. Pain 154:1792–1797

    PubMed  Google Scholar 

  46. Balenzuela P, Chernomoretz A, Fraiman D, Cifre I, Sitges C, Ontoya P, Chialvo DR (2010) Modular organization of brain resting state networks in chronic back pain patients. Front Neuroinform 1:116

    Google Scholar 

  47. Mills EP, DiPietro F, Alshelh Z, Peck CC, Murray GM, Vickers ER, Henderson LA (2017) Brainstem pain control circuitry connectivity in chronic neuropathic pain. J Neurosci:1647–1617. https://doi.org/10.1523/JNEUROSCI.1647-17.2017

  48. Lorenz J, Cross DJ, Minoshima S, Morrow TJ, Paulson PE, Casey JL (2002) A unique representation of heat allodynia in the human brain. Neuron 35(2):383–393

    CAS  PubMed  Google Scholar 

  49. Schwedt TJ, Larson-Prior L, Coalson RS, Nolan T, Mar S, Ances BM, Benzinger T, Schlaggar BL (2014) Allodynia and descending pain modulation in migraine : a resting state functional connectivity analysis. Pain Med 15(1):154–165

    PubMed  Google Scholar 

  50. Seminowicz DA, Davis KD (2005) Cortical responses to pain in healthy individuals depends on pain catastrophizing. Pain 120:297–306

    Google Scholar 

  51. Cauda F, Palermo S, Costa T, Torta R, Duca S, Vercelli U, Geminiani G, Torta DME (2014) Gray matter alterations in chronic pain : a network-oriented meta-analytic approach. Neuroimage Clin 4:676–686

    PubMed  PubMed Central  Google Scholar 

  52. Mansour A, Baliki MN, Huang L, Torbey S, Herrmann K, Schnitzer TJ, Apkarian AV (2013) Brain white matter structural properties predict transition to chronic pain. Pain 154(10):2160–2168

    PubMed  PubMed Central  Google Scholar 

  53. Lutz J, Jäger L, de Quervain D, Krauseneck T, Padberg F, Wichnalek M, Beyer A, Stahl R, Zirngibl B, Reiser M, Schelling G (2008) White and grey matter abnormalities in the brain of patients with fibromyalgia : a diffusion-tensor and volumetric imaging study. Arthritis Rheum 58(12):3960–3969

    PubMed  Google Scholar 

  54. Hotta J, Zhou G, Harno H, Forss N, Hari R (2017) Complex regional pain syndrome : the matter of white matter ? Brain Behav 7(5):e00647. https://doi.org/10.1002/brb3.647. eCollection 2017 May

    Article  PubMed  PubMed Central  Google Scholar 

  55. Farmer MA, Baliki MN, Apkarian AV (2012) A dynamical network perspective of chronic pain. Neurosci Lett 520(2):197–203

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chapin H, Bagarinao E, Mackey S (2012) Real-time applied to pain management. Neurosci Lett 520(2):174–181

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sulzer J, Haller S, Scharnowski F, Weiskopf N, Birbaumer N, Blefari ML, Bruehl AB, Cohen LG, deCharms RC, Gassert R, Goebel R, Herwig U, LaConte S, Linden D, Luft A, Seifritz E, Sitaram R (2013) Real-time fMRI neurofeedback : progress and challenges. NeuroImage 73:386–399

    Google Scholar 

  58. deCharms RC, Maeda F, Glover GH, Ludlow D, Pauly JM, Soneji D, Gabrieli JDE, Mackey SC (2005) Control over brain activation and pain learned by using real-time functional MRI. PNAS 102(51):18627–18631

    Google Scholar 

  59. Emmert K, Breimhorst M, Bauermann T, Birklein F, Van De ville D, Haller S (2014 .; 8 article) Comparison of anterior cingulate vs insular cortex as targets for real-time fMRI regulation during pain stimulation. Front Behav Neurosci 350:1–13

    Google Scholar 

  60. Rance M, Ruttorf M, Nees F, Schad LR, Flor H (2014) Real time fMRI feedback of the anterior cingulate and posterior insular cortex in the processing of pain. Hum Brain Mapp 35(12):5784–5798

    PubMed  PubMed Central  Google Scholar 

  61. Emmert K, Kopel R, Sulzer J, Brühl AB, Berman BD, Linden DEJ, Horovitz SG, Caria A, Frank S, Johnston LZL, Paret C, Robineau F, Veit R, Bartsch A, Beckmann CF, Van De Ville D, Haller S (2016) Meta-analysis of real-time fMRI neurofeedback studies using individual participant data : how is brain regulation mediated ? NeuroImage 124:806–812

    PubMed  Google Scholar 

  62. Jensen MP, Day MA, Miro J (2014) Neuromodulatory treatments for chronic pain : efficacy and mechanisms. Nat Rev Neurol 10:167–178

    PubMed  PubMed Central  Google Scholar 

  63. Landry M, Lifshitz M, Raz A (2017) Brain correlates of hypnosis : a systematic review and meta-analytic exploration. Neurosci Biobehav Rev 81:75–98

    PubMed  Google Scholar 

  64. Lutz A, McFarlin DR, Perlman DM, Salomons TV, Davidson RJ (2013) Altered anterior insula activation during anticipation and experience of painful stimuli in expert meditators. NeuroImage 64:538–546

    PubMed  Google Scholar 

  65. Fregni F, freedman S, Pascual-Leone A (2007) Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques. Lancet Neurol 6:188–191

    PubMed  Google Scholar 

  66. Siebner HR, Bergmann TO, Nestmann S, Massimini M et al (2009) Consensus paper : combining transcranial stimulation with neuroimaging. Brain Stimul 2:58–80

    PubMed  Google Scholar 

  67. Klooster DCW, de Louw AJA, Aldenkamp AP, Besseling RMH, Mestrom RMC, Carette S, Zinger S, bergmans JWM, Mess WH, Vonck K, Carrette E, Breuer LEM, Bernas A, Tijuis AG, Boon P (2016) Technical aspects of neurostimulation : focus on equipment, electric field modeling and stimulation protocols. Neurosci Biobehav Rev 65:113–141

    CAS  PubMed  Google Scholar 

  68. Luedtke K, Rushton A, Wright C, Geiss B, Juergens TP, May A (2012) Transcranial direct current stimulation for the reduction of clinical and experimentally induced pain : a systematic review and meta-analysis. Clin J Pain 28(5):452–461

    PubMed  Google Scholar 

  69. O'Connell NE, Wand BM, Marston L, Spencer S, Desouza LH (2011) Non-invasive brain stimulation techniques for a chronic pain. A report of a Cochrane systematic review and meta-analysis. Eur J Phys Rehabil Med 47(2):309–326

    CAS  PubMed  Google Scholar 

  70. Vaseghi B, Zoghi M, Jaberzadeh S (2014) Does anodal transcranial direct current stimulation modulate sensory perception and pain? A metaanalysis study. Clinical Neurophysiol 125(9):1847–1858

    Google Scholar 

  71. DosSantos MF, Love TM, Martikainen IK, Nascimento TD, Fregni F, Cummiford C, Deboer MD, Zubieta J-K, DaSilva AFM (2012) Immediate effects of tDCS on the μ-opioid system of a chronic pain patient. Front Psych 3:93

    Google Scholar 

  72. Lang N, Siebner HR, Ward NS, Lee L, Nitsche MA, Paulus W, Rothwell JC, Lemon RN, rackowiak RS (2005) How does trans-cranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain ? Eur J Neurosci 22(2):495–504

    PubMed  PubMed Central  Google Scholar 

  73. Peyron R, Faillenot I, Mertens P, Laurent B, Garcia-Larrea L (2007) Motor cortex stimulation in neuropathic pain. Correlations between analgesic effect and hemodynamic changes in the brain. A PET study. NeuroImage 34(1):310–321

    PubMed  Google Scholar 

  74. Jin Y, Xing G, Li G, Wang A, Feng S, Tang Q, Liao X, Guo Z, McClure MA, Mu Q (2015) High frequency repetitive transcranial magnetic stimulation therapy for chronic neuropathic pain : a meta-analysis. Pain Physician 18(6):E1029–E1046

    PubMed  Google Scholar 

  75. Lefaucheur J-P, Antal A, Ahdab R, Ciampi de Andrade D, Fregni F, Khedr EM, Nitsche M, Paulus W (2008) The use of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) to relieve pain. Brain Stimul 1:337–344

    PubMed  Google Scholar 

  76. André-Obadia N, Mertens P, Gueguen A, Peyron R, Garcia-Larrea L (2008) Pain relief by rTMS. Differential effect of current flow but no specific action on pain subtypes. Neurology 71(11):833

    PubMed  Google Scholar 

  77. Hou WH, Wang TY, Kang JH (2016) The effects of add-on non-invasive brain stimulation in fibromyalgia : a meta-analysis and meta-regression of randomized controlled trials. Rheumatology (Oxford) 55(8):1507–1517

    Google Scholar 

  78. Maleki N, Brawn J, Barmetter G, Borsook D, Becerra L (2013) Pain responses measured with arterial spin labelling. NMR Biomed 26(6):664–673

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Segerdahl AR, Mezue M, Okell TW, Farrar JT, Tracey I (2015) The dorsal posterior insula subserves a fundamental role in human pain. Nat Neurosci 18(4):499–500

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Habas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Espinoza, S., Habas, C. (2018). Neuroimaging of Pain. In: Habas, C. (eds) The Neuroimaging of Brain Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-78926-2_14

Download citation

Publish with us

Policies and ethics