Skip to main content

Cell Organelles as Targets of Cadmium Toxicity

  • Chapter
  • First Online:
Cadmium Interaction with Animal Cells
  • 255 Accesses

Abstract

Ever increasing environmental cadmium presence consequent of industrial activities is considered a health hazard and is closely linked to deteriorating global health status as general animal cadmium exposure expands from cigarette smoke and ingestion of foodstuffs sourced from heavily polluted hotspots to widespread contaminated air and water, including cadmium-containing microplastics found in household water. Cadmium exerts myriads of cellular perturbances based on its abilities to directly interact with macromolecules and to mimic or displace essential physiological ions. Cell organelles are membrane-bound structures that form complex tightly regulated compartmentalized networks with specialized functions which are fundamental to life. Interorganellar communication is mediated either by release of signaling molecules, mechanical force through change in organelle shape or direct membrane contacts and is crucial to orchestrate correct cell behavior and adaptive stress responses. In this chapter, cadmium effects on organellar structure and function will be reviewed with particular consideration to disruption of organelle physiology in vertebrates. Mitochondrial dysfunction (electron transport chain, mitochondrial membrane potential, permeability transition), mitochondrial dynamics, intralumenal homeostasis and stress response in the endoplasmic reticulum, altered nuclear architecture and chromatin organization, lysosomal expansion, instability and membrane permeabilization, autophagic flux, and disruption of vesicle trafficking will be discussed in the context of cadmium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Voeltz GK, Barr FA (2013) Cell organelles. Curr Op Cell Biol 25(4):403–405

    Article  CAS  PubMed  Google Scholar 

  2. Elbaz-Alon Y (2017) Mitochondria-organelle contact sites: the plot thickens. Biochem Soc Trans 45(2):477–488

    Article  CAS  PubMed  Google Scholar 

  3. Le MT, Gailer J, Prenner EJ (2009) Hg2+ and Cd2+ interact differently with biomimetic erythrocyte membranes. Biometals 22(2):261–274

    Article  CAS  PubMed  Google Scholar 

  4. Payliss BJ, Hassanin M, Prenner EJ (2015) The structural and functional effects of Hg(II) and Cd(II) on lipid model systems and human erythrocytes: a review. Chem Phys Lipids 193:36–51

    Article  CAS  PubMed  Google Scholar 

  5. Lee WK, Probst S, Santoyo-Sanchez MP, Al-Hamdani W, Diebels I, von Sivers JK, Kerek E, Prenner EJ, Thevenod F (2017) Initial autophagic protection switches to disruption of autophagic flux by lysosomal instability during cadmium stress accrual in renal NRK-52E cells. Arch Toxicol 91(10):3225–3245

    Article  CAS  PubMed  Google Scholar 

  6. Lee WK, Torchalski B, Kohistani N, Thevenod F (2011) ABCB1 protects kidney proximal tubule cells against cadmium-induced apoptosis: roles of cadmium and ceramide transport. Toxicol Sci 121(2):343–356

    Article  CAS  PubMed  Google Scholar 

  7. Modi HR, Katyare SS (2009) Effect of treatment with cadmium on structure-function relationships in rat liver mitochondria: studies on oxidative energy metabolism and lipid/phospholipids profiles. J Membr Biol 232(1–3):47–57

    Article  CAS  PubMed  Google Scholar 

  8. Modi HR, Katyare SS (2009) Cadmium exposure-induced alterations in the lipid/phospholipids composition of rat brain microsomes and mitochondria. Neurosci Lett 464(2):108–112

    Article  CAS  PubMed  Google Scholar 

  9. Lee WK, Kolesnick RN (2017) Sphingolipid abnormalities in cancer multidrug resistance: chicken or egg? Cell Signal 38:134–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ribas V, Garcia-Ruiz C, Fernandez-Checa JC (2016) Mitochondria, cholesterol and cancer cell metabolism. Clin Trans Med 5(1):22

    Article  Google Scholar 

  11. Thevenod F, Lee WK (2013) Toxicology of cadmium and its damage to mammalian organs. Met Ions Life Sci 11:415–490

    Article  CAS  PubMed  Google Scholar 

  12. Hartwig A (2013) Cadmium and cancer. Met Ions Life Sci 11:491–507

    Article  CAS  PubMed  Google Scholar 

  13. Kerek EM, Prenner EJ (2016) Inorganic cadmium affects the fluidity and size of phospholipid based liposomes. Biochim Biophys Acta 1858(12):3169–3181

    Article  CAS  PubMed  Google Scholar 

  14. Thevenod F, Lee WK (2013) Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 87(10):1743–1786

    Article  CAS  PubMed  Google Scholar 

  15. Yang XF, Han QG, Liu DY, Zhang HT, Fan GY, Ma JY, Wang ZL (2016) Microstructure and ultrastructure alterations in the pallium of immature mice exposed to cadmium. Biol Trace Elem Res 174(1):105–111

    Article  CAS  PubMed  Google Scholar 

  16. Early JL 2nd, Nonavinakere VK, Weaver A (1992) Effect of cadmium and/or selenium on liver mitochondria and rough endoplasmic reticulum in the rat. Toxicol Lett 62(1):73–83

    Article  CAS  PubMed  Google Scholar 

  17. Braeckman B, Brys K, Rzeznik U, Raes H (1999) Cadmium pathology in an insect cell line: ultrastructural and biochemical effects. Tissue Cell 31(1):45–53

    Article  CAS  PubMed  Google Scholar 

  18. Asar M, Kayisli UA, Izgut-Uysal VN, Akkoyunlu G (2004) Immunohistochemical and ultrastructural changes in the renal cortex of cadmium-treated rats. Biol Trace Elem Res 97(3):249–263

    Article  CAS  PubMed  Google Scholar 

  19. Ord MJ, Bouffler SD, Chibber R (1988) Cadmium induced changes in cell organelles: an ultrastructural study using cadmium sensitive and resistant muntjac fibroblast cell lines. Arch Toxicol 62(2–3):133–145

    Article  CAS  PubMed  Google Scholar 

  20. Takaki A, Jimi S, Segawa M, Hisano S, Takebayashi S, Iwasaki H (2004) Long-term cadmium exposure accelerates age-related mitochondrial changes in renal epithelial cells. Toxicology 203(1–3):145–154

    Article  CAS  PubMed  Google Scholar 

  21. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337(6098):1062–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu S, Pi H, Zhang L, Zhang N, Li Y, Zhang H, Tang J, Li H, Feng M, Deng P, Guo P, Tian L, Xie J, He M, Lu Y, Zhong M, Zhang Y, Wang W, Reiter RJ, Yu Z, Zhou Z (2016) Melatonin prevents abnormal mitochondrial dynamics resulting from the neurotoxicity of cadmium by blocking calcium-dependent translocation of Drp1 to the mitochondria. J Pineal Res 60(3):291–302

    Article  CAS  PubMed  Google Scholar 

  23. Pi H, Xu S, Zhang L, Guo P, Li Y, Xie J, Tian L, He M, Lu Y, Li M, Zhang Y, Zhong M, Xiang Y, Deng L, Zhou Z, Yu Z (2013) Dynamin 1-like-dependent mitochondrial fission initiates overactive mitophagy in the hepatotoxicity of cadmium. Autophagy 9(11):1780–1800

    Article  CAS  PubMed  Google Scholar 

  24. Luz AL, Godebo TR, Smith LL, Leuthner TC, Maurer LL, Meyer JN (2017) Deficiencies in mitochondrial dynamics sensitize Caenorhabditis elegans to arsenite and other mitochondrial toxicants by reducing mitochondrial adaptability. Toxicology 387:81–94

    Article  CAS  PubMed  Google Scholar 

  25. Jones AW, Yao Z, Vicencio JM, Karkucinska-Wieckowska A, Szabadkai G (2012) PGC-1 family coactivators and cell fate: roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria-nucleus signalling. Mitochondrion 12(1):86–99

    Article  CAS  PubMed  Google Scholar 

  26. Nair AR, Lee WK, Smeets K, Swennen Q, Sanchez A, Thevenod F, Cuypers A (2015) Glutathione and mitochondria determine acute defense responses and adaptive processes in cadmium-induced oxidative stress and toxicity of the kidney. Arch Toxicol 89(12):2273–2289

    Article  CAS  PubMed  Google Scholar 

  27. Guo P, Pi H, Xu S, Zhang L, Li Y, Li M, Cao Z, Tian L, Xie J, Li R, He M, Lu Y, Liu C, Duan W, Yu Z, Zhou Z (2014) Melatonin improves mitochondrial function by promoting MT1/SIRT1/PGC-1 alpha-dependent mitochondrial biogenesis in cadmium-induced hepatotoxicity in vitro. Toxicol Sci 142(1):182–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wolff NA, Ghio AJ, Garrick LM, Garrick MD, Zhao L, Fenton RA, Thevenod F (2014) Evidence for mitochondrial localization of divalent metal transporter 1 (DMT1). FASEB J 28(5):2134–2145

    Article  CAS  PubMed  Google Scholar 

  29. Choong G, Liu Y, Templeton DM (2014) Interplay of calcium and cadmium in mediating cadmium toxicity. Chem Biol Interact 211:54–65

    Article  CAS  PubMed  Google Scholar 

  30. Lee WK, Bork U, Gholamrezaei F, Thevenod F (2005) Cd2+-induced cytochrome c release in apoptotic proximal tubule cells: role of mitochondrial permeability transition pore and Ca2+ uniporter. Am J Physiol Renal Physiol 288(1):F27–39

    Article  CAS  PubMed  Google Scholar 

  31. Lee WK, Spielmann M, Bork U, Thevenod F (2005) Cd2+-induced swelling-contraction dynamics in isolated kidney cortex mitochondria: role of Ca2+ uniporter, K+ cycling, and protonmotive force. Am J Physiol Cell Physiol 289(3):C656–664

    Article  CAS  PubMed  Google Scholar 

  32. Li M, Xia T, Jiang CS, Li LJ, Fu JL, Zhou ZC (2003) Cadmium directly induced the opening of membrane permeability pore of mitochondria which possibly involved in cadmium-triggered apoptosis. Toxicology 194(1–2):19–33

    Article  CAS  PubMed  Google Scholar 

  33. Dorta DJ, Leite S, DeMarco KC, Prado IM, Rodrigues T, Mingatto FE, Uyemura SA, Santos AC, Curti C (2003) A proposed sequence of events for cadmium-induced mitochondrial impairment. J Inorg Biochem 97(3):251–257

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Fang J, Leonard SS, Rao KM (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36(11):1434–1443

    Article  CAS  PubMed  Google Scholar 

  35. Miccadei S, Floridi A (1993) Sites of inhibition of mitochondrial electron transport by cadmium. Chem Biol Interact 89(2–3):159–167

    Article  CAS  PubMed  Google Scholar 

  36. Petrosillo G, Ruggiero FM, Paradies G (2003) Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB J 17(15):2202–2208

    Article  CAS  PubMed  Google Scholar 

  37. Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9(5):550–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427(6973):461–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Belyaeva EA, Glazunov VV, Korotkov SM (2002) Cyclosporin A-sensitive permeability transition pore is involved in Cd2+-induced dysfunction of isolated rat liver mitochondria: doubts no more. Arch Biochem Biophys 405(2):252–264

    Article  CAS  PubMed  Google Scholar 

  40. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434(7033):658–662

    Article  CAS  PubMed  Google Scholar 

  41. Lizana L, Bauer B, Orwar O (2008) Controlling the rates of biochemical reactions and signaling networks by shape and volume changes. Proc Nat Acad Sci USA 105(11):4099–4104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaasik A, Kuum M, Joubert F, Wilding J, Ventura-Clapier R, Veksler V (2010) Mitochondria as a source of mechanical signals in cardiomyocytes. Cardiovasc Res 87(1):83–91

    Article  CAS  PubMed  Google Scholar 

  43. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334(6054):358–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sanchez-Wandelmer J, Ktistakis NT, Reggiori F (2015) ERES: sites for autophagosome biogenesis and maturation? J Cell Sci 128(2):185–192

    Article  CAS  PubMed  Google Scholar 

  45. Balla T (2018) Ca2+ and lipid signals hold hands at ER-plasma membrane contact sites. J Physiol 596(14):2709–2716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Woehlbier U, Hetz C (2011) Modulating stress responses by the UPRosome: a matter of life and death. Trends Biochem Sci 36(6):329–337

    Article  CAS  PubMed  Google Scholar 

  47. Margittai E, Enyedi B, Csala M, Geiszt M, Banhegyi G (2015) Composition of the redox environment of the endoplasmic reticulum and sources of hydrogen peroxide. Free Radic Biol Med 83:331–340

    Article  CAS  PubMed  Google Scholar 

  48. Biagioli M, Pifferi S, Ragghianti M, Bucci S, Rizzuto R, Pinton P (2008) Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium 43(2):184–195

    Article  CAS  PubMed  Google Scholar 

  49. Liu F, Inageda K, Nishitai G, Matsuoka M (2006) Cadmium induces the expression of Grp78, an endoplasmic reticulum molecular chaperone, in LLC-PK1 renal epithelial cells. Environ Health Perspect 114(6):859–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yokouchi M, Hiramatsu N, Hayakawa K, Okamura M, Du S, Kasai A, Takano Y, Shitamura A, Shimada T, Yao J, Kitamura M (2008) Involvement of selective reactive oxygen species upstream of proapoptotic branches of unfolded protein response. J Biol Chem 283(7):4252–4260

    Article  CAS  PubMed  Google Scholar 

  51. Gardarin A, Chedin S, Lagniel G, Aude JC, Godat E, Catty P, Labarre J (2010) Endoplasmic reticulum is a major target of cadmium toxicity in yeast. Mol Microbiol 76(4):1034–1048

    Article  CAS  PubMed  Google Scholar 

  52. Hechtenberg S, Beyersmann D (1994) Interference of cadmium with ATP-stimulated nuclear calcium uptake. Environ Health Perspect 102(Suppl 3):265–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fighetti MA, Miele M, Montella A, Desole MS, Congiu AM, Anania V (1988) Possible involvement of nuclei in cadmium-induced modifications of cultured cells. Arch Toxicol 62(6):476–478

    Article  CAS  PubMed  Google Scholar 

  54. Bryan SE, Hidalgo HA (1976) Nuclear 115cadmium: uptake and disappearance correlated with cadmium-binding protein synthesis. Biochem Biophys Res Commun 68(3):858–866

    Article  CAS  PubMed  Google Scholar 

  55. Goering PL, Klaassen CD (1983) Altered subcellular distribution of cadmium following cadmium pretreatment: possible mechanism of tolerance to cadmium-induced lethality. Toxicol Appl Pharmacol 70(2):195–203

    Article  CAS  PubMed  Google Scholar 

  56. Peereboom-Stegeman JH, Morselt AF (1981) Increase in liver cell nuclear size after chronic cadmium treatment. Arch Toxicol 48(2–3):209–211

    Article  CAS  PubMed  Google Scholar 

  57. Matsuura K, Takasugi M, Kunifuji Y, Horie A, Kuroiwa A (1991) Morphological effects of cadmium on proximal tubular cells in rats. Biol Trace Elem Res 31(2):171–182

    Article  CAS  PubMed  Google Scholar 

  58. Banfalvi G, Gacsi M, Nagy G, Kiss ZB, Basnakian AG (2005) Cadmium induced apoptotic changes in chromatin structure and subphases of nuclear growth during the cell cycle in CHO cells. Apoptosis 10(3):631–642

    Article  CAS  PubMed  Google Scholar 

  59. Puvion E, Lange M (1980) Functional significance of perichromatin granule accumulation induced by cadmium chloride in isolated rat liver cells. Exp Cell Res 128(1):47–58

    Article  CAS  PubMed  Google Scholar 

  60. Cervera J, Alamar M, Martinez A, Renau-Piqueras J (1983) Nuclear alterations induced by cadmium chloride and l-canavanine in HeLa S3 cells. Accumulation of perichromatin granules. J Ultrastruc Res 82(3):241–263

    Article  CAS  PubMed  Google Scholar 

  61. Neri LM, Raymond Y, Giordano A, Borgatti P, Marchisio M, Capitani S, Martelli AM (1999) Spatial distribution of lamin A and B1 in the K562 cell nuclear matrix stabilized with metal ions. J Cell Biochem 75(1):36–45

    Article  CAS  PubMed  Google Scholar 

  62. Ungricht R, Kutay U (2017) Mechanisms and functions of nuclear envelope remodelling. Nat Rev Mol Cell Biol 18(4):229–245

    Article  CAS  PubMed  Google Scholar 

  63. Neri LM, Bortul R, Zweyer M, Tabellini G, Borgatti P, Marchisio M, Bareggi R, Capitani S, Martelli AM (1999) Influence of different metal ions on the ultrastructure, biochemical properties, and protein localization of the K562 cell nuclear matrix. J Cell Biochem 73(3):342–354

    Article  CAS  PubMed  Google Scholar 

  64. Mathers JC, Strathdee G, Relton CL (2010) Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet 71:3–39

    Article  PubMed  Google Scholar 

  65. Humphries B, Wang Z, Yang C (2016) The role of microRNAs in metal carcinogen-induced cell malignant transformation and tumorigenesis. Food Chem Toxicol 98(Pt A):58–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gadhia SR, O’Brien D, Barile FA (2015) Cadmium affects mitotically inherited histone modification pathways in mouse embryonic stem cells. Toxicol In Vitro 30(1 Pt B):583–592

    Article  CAS  PubMed  Google Scholar 

  67. Xiao C, Liu Y, Xie C, Tu W, Xia Y, Costa M, Zhou X (2015) Cadmium induces histone H3 lysine methylation by inhibiting histone demethylase activity. Toxicol Sci 145(1):80–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gaido ML, Cidlowski JA (1991) Identification, purification, and characterization of a calcium-dependent endonuclease (NUC18) from apoptotic rat thymocytes. NUC18 is not histone H2B. J Biol Chem 266(28):18580–18585

    Google Scholar 

  69. Lohmann RD, Beyersmann D (1994) Effects of zinc and cadmium on apoptotic DNA fragmentation in isolated bovine liver nuclei. Environ Health Perspect 102(Suppl 3):269–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Beyersmann D, Block C, Malviya AN (1994) Effects of cadmium on nuclear protein kinase C. Environ Health Perspect 102(Suppl 3):177–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bialkowski K, Bialkowska A, Kasprzak KS (1999) Cadmium(II), unlike nickel(II), inhibits 8-oxo-dGTPase activity and increases 8-oxo-dG level in DNA of the rat testis, a target organ for cadmium(II) carcinogenesis. Carcinogenesis 20(8):1621–1624

    Article  CAS  PubMed  Google Scholar 

  72. Suzuki H, Tashiro S, Sun J, Doi H, Satomi S, Igarashi K (2003) Cadmium induces nuclear export of Bach1, a transcriptional repressor of heme oxygenase-1 gene. J Biol Chem 278(49):49246–49253

    Article  CAS  PubMed  Google Scholar 

  73. Topisirovic I, Capili AD, Borden KL (2002) Gamma interferon and cadmium treatments modulate eukaryotic initiation factor 4E-dependent mRNA transport of cyclin D1 in a PML-dependent manner. Mol Cell Biol 22(17):6183–6198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Petering DH (2017) Reactions of the Zn proteome with Cd2+ and other xenobiotics: trafficking and toxicity. Chem Res Toxicol 30(1):189–202

    Article  CAS  PubMed  Google Scholar 

  75. Meplan C, Mann K, Hainaut P (1999) Cadmium induces conformational modifications of wild-type p53 and suppresses p53 response to DNA damage in cultured cells. J Biol Chem 274(44):31663–31670

    Article  CAS  PubMed  Google Scholar 

  76. Herak-Kramberger CM, Brown D, Sabolic I (1998) Cadmium inhibits vacuolar H+-ATPase and endocytosis in rat kidney cortex. Kidney Int 53(6):1713–1726

    Article  CAS  PubMed  Google Scholar 

  77. Wells TN, Coulin F, Payton MA, Proudfoot AE (1993) Phosphomannose isomerase from Saccharomyces cerevisiae contains two inhibitory metal ion binding sites. Biochemistry 32(5):1294–1301

    Article  CAS  PubMed  Google Scholar 

  78. Messner B, Ploner C, Laufer G, Bernhard D (2012) Cadmium activates a programmed, lysosomal membrane permeabilization-dependent necrosis pathway. Toxicol Lett 212(3):268–275

    Article  CAS  PubMed  Google Scholar 

  79. Ferri S (1980) Effect of cadmium on Golgi complex of freshwater teleost (Pimelodus maculatus) hepatocytes. Protoplasma 103(1):99–103

    Article  CAS  PubMed  Google Scholar 

  80. Petersen NH, Olsen OD, Groth-Pedersen L, Ellegaard AM, Bilgin M, Redmer S, Ostenfeld MS, Ulanet D, Dovmark TH, Lonborg A, Vindelov SD, Hanahan D, Arenz C, Ejsing CS, Kirkegaard T, Rohde M, Nylandsted J, Jaattela M (2013) Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. Cancer Cell 24(3):379–393

    Article  CAS  PubMed  Google Scholar 

  81. Fotakis G, Cemeli E, Anderson D, Timbrell JA (2005) Cadmium chloride-induced DNA and lysosomal damage in a hepatoma cell line. Toxicol In Vitro 19(4):481–489

    Article  CAS  PubMed  Google Scholar 

  82. Giri SN, Hollinger MA (1995) Effect of cadmium on lung lysosomal enzymes in vitro. Arch Toxicol 69(5):341–345

    Article  CAS  PubMed  Google Scholar 

  83. Sabolic I, Ljubojevic M, Herak-Kramberger CM, Brown D (2002) Cd-MT causes endocytosis of brush-border transporters in rat renal proximal tubules. Am J Physiol Renal Physiol 283(6):F1389–1402

    Article  CAS  PubMed  Google Scholar 

  84. Covian-Nares JF, Smith RM, Vogel SS (2008) Two independent forms of endocytosis maintain embryonic cell surface homeostasis during early development. Dev Biol 316(1):135–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Katti S, Nyenhuis SB, Her B, Srivastava AK, Taylor AB, Hart PJ, Cafiso DS, Igumenova TI (2017) Non-native metal ion reveals the role of electrostatics in synaptotagmin 1-membrane interactions. Biochemistry 56(25):3283–3295

    Article  CAS  PubMed  Google Scholar 

  86. Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15(7):713–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Thevenod F, Lee WK, Wolff NA (2015) Rapamycin: a therapy of choice for endoplasmic reticulum stress-induced renal proximal tubule toxicity? Toxicology 330:41–43

    Article  CAS  PubMed  Google Scholar 

  88. Thevenod F, Lee WK (2015) Live and let die: roles of autophagy in cadmium nephrotoxicity. Toxics 3(2):130–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chargui A, Zekri S, Jacquillet G, Rubera I, Ilie M, Belaid A, Duranton C, Tauc M, Hofman P, Poujeol P, El May MV, Mograbi B (2011) Cadmium-induced autophagy in rat kidney: an early biomarker of subtoxic exposure. Toxicol Sci 121(1):31–42

    Article  CAS  PubMed  Google Scholar 

  90. Liu F, Wang XY, Zhou XP, Liu ZP, Song XB, Wang ZY, Wang L (2017) Cadmium disrupts autophagic flux by inhibiting cytosolic Ca2+-dependent autophagosome-lysosome fusion in primary rat proximal tubular cells. Toxicology 383:13–23

    Article  CAS  PubMed  Google Scholar 

  91. Li M, Pi H, Yang Z, Reiter RJ, Xu S, Chen X, Chen C, Zhang L, Yang M, Li Y, Guo P, Li G, Tu M, Tian L, Xie J, He M, Lu Y, Zhong M, Zhang Y, Yu Z, Zhou Z (2016) Melatonin antagonizes cadmium-induced neurotoxicity by activating the transcription factor EB-dependent autophagy-lysosome machinery in mouse neuroblastoma cells. J Pineal Res 61(3):353–369

    Article  CAS  PubMed  Google Scholar 

  92. Limson J, Nyokong T, Daya S (1998) The interaction of melatonin and its precursors with aluminium, cadmium, copper, iron, lead, and zinc: an adsorptive voltammetric study. J Pineal Res 24(1):15–21

    Article  CAS  PubMed  Google Scholar 

  93. Choi J, Jo M, Lee E, Choi D (2011) Induction of apoptotic cell death via accumulation of autophagosomes in rat granulosa cells. Fertil Steril 95(4):1482–1486

    Article  CAS  PubMed  Google Scholar 

  94. Maas SL, Breakefield XO, Weaver AM (2017) Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 27(3):172–188

    Article  CAS  PubMed  Google Scholar 

  95. Lee WK, Torchalski B, Thevenod F (2007) Cadmium-induced ceramide formation triggers calpain-dependent apoptosis in cultured kidney proximal tubule cells. Am J Physiol Cell Physiol 293(3):C839–847

    Article  CAS  PubMed  Google Scholar 

  96. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247

    Article  CAS  PubMed  Google Scholar 

  97. Serban KA, Rezania S, Petrusca DN, Poirier C, Cao D, Justice MJ, Patel M, Tsvetkova I, Kamocki K, Mikosz A, Schweitzer KS, Jacobson S, Cardoso A, Carlesso N, Hubbard WC, Kechris K, Dragnea B, Berdyshev EV, McClintock J, Petrache I (2016) Structural and functional characterization of endothelial microparticles released by cigarette smoke. Sci Rep 6:31596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yamada H, Yamamoto A, Yodozawa S, Kozaki S, Takahashi M, Morita M, Michibata H, Furuichi T, Mikoshiba K, Moriyama Y (1996) Microvesicle-mediated exocytosis of glutamate is a novel paracrine-like chemical transduction mechanism and inhibits melatonin secretion in rat pinealocytes. J Pineal Res 21(3):175–191

    Article  CAS  PubMed  Google Scholar 

  99. Lodhi IJ, Semenkovich CF (2014) Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab 19(3):380–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen T, Li W, Schulz PJ, Furst A, Chien PK (1995) Induction of peroxisome proliferation and increase of catalase activity in yeast, Candida albicans, by cadmium. Biol Trace Elem Res 50(2):125–133

    Article  CAS  PubMed  Google Scholar 

  101. Rao MS, Reddy JK (1991) An overview of peroxisome proliferator-induced hepatocarcinogenesis. Environ Health Perspect 93:205–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Orbea A, Ortiz-Zarragoitia M, Cajaraville MP (2002) Interactive effects of benzo(a)pyrene and cadmium and effects of di(2-ethylhexyl) phthalate on antioxidant and peroxisomal enzymes and peroxisomal volume density in the digestive gland of mussel Mytilus galloprovincialis Lmk. Biomarkers 7(1):33–48

    Article  CAS  PubMed  Google Scholar 

  103. Wang J, Zhang H, Zhang T, Zhang R, Liu R, Chen Y (2015) Molecular mechanism on cadmium-induced activity changes of catalase and superoxide dismutase. Int J Biol Macromol 77:59–67

    Article  CAS  PubMed  Google Scholar 

  104. Jacobson KB, Turner JE (1980) The interaction of cadmium and certain other metal ions with proteins and nucleic acids. Toxicology 16(1):1–37

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

W. -K. L is financially supported by the Intramural Research Program at Witten/Herdecke University (IFF2016-20, IFF2017-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wing-Kee Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, WK. (2018). Cell Organelles as Targets of Cadmium Toxicity. In: Thévenod, F., Petering, D., M. Templeton, D., Lee, WK., Hartwig, A. (eds) Cadmium Interaction with Animal Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-89623-6_4

Download citation

Publish with us

Policies and ethics