Skip to main content

Thermal Scans for Detecting Hardware Trojans

  • Conference paper
  • First Online:
Constructive Side-Channel Analysis and Secure Design (COSADE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10815))

Abstract

It is well known that companies have been outsourcing their IC production to countries where it is simply not possible to guarantee the integrity of final products. This relocation trend creates a need for methodologies and embedded design solutions to identify counterfeits but also to detect potential Hardware Trojans (HT). Hardware Trojans are tiny pieces of hardware that can be maliciously inserted in designs for several purposes ranging from denial of service, programmed obsolescence etc. They are usually stealthy and characterized by small area and power overheads. Their detection is thus a challenging task.

Various solutions have been investigated to detect Hardware Trojans. We focus in this paper on the use of thermal near field scans to that aim. Therefore we first introduce and characterize a low cost, large bandwidth (20 kHz) thermal scanning system with the high detectivity required to detect small Hardware Trojans. Then, we experimentally demonstrate its efficiency on different test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loai, A., Houssain, H., Al-Somani, T.F.: Review of Side Channel Attacks and Countermeasures on ECC, RSA, and AES Cryptosystems

    Google Scholar 

  2. Nowroz, A.N., Hu, K., Koushanfar, F., Reda, S.: Novel techniques for high-sensitivity hardware Trojan detection using thermal and power maps. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 33(12), 1792–1805 (2014)

    Article  Google Scholar 

  3. Ngo, X.T., Najm, Z., Bhasin, S., Guilley, S., Danger, J.L.: Method taking into account process dispersion to detect hardware Trojan Horse by side-channel analysis. J. Cryptogr. Eng. 6, 239–247 (2016)

    Article  Google Scholar 

  4. Balasch, J., Gierlichs, B., Verbauwhede, I.: Electromagnetic circuit fingerprints for hardware Trojan detection. In: IEEE International Symposium on Electromagnetic Compatibility (EMC), Dresden, pp. 246–251 (2015)

    Google Scholar 

  5. Zhang, X., Tehranipoor, M.: RON: an on-chip ring oscillator network for hardware Trojan detection. In: Design, Automation and Test in Europe, Grenoble, pp. 1–6 (2011)

    Google Scholar 

  6. Lecomte, M., Fournier, J., Maurine, P.: An on-chip technique to detect hardware Trojans and assist counterfeit identification. IEEE Trans. Very Large Scale Integr. VLSI Syst. 25(12), 3317–3330 (2017)

    Article  Google Scholar 

  7. Tan, M.C., Tay, M.Y., Qiu, W., Phoa, S.L.: Fault localization using infra-red lock-in thermography for SOI-based advanced microprocessors. In: Physical and Failure Analysis of Integrated Circuits, IPFA, p. 15 (2011)

    Google Scholar 

  8. Hu, K., Nowroz, A.N., Reda, S., Koushanfar, F.: High-sensitivity hardware Trojan detection using multimodal characterization. In: Design, Automation and Test in Europe Conference and Exhibition, DATE, pp. 1271–1276 (2013)

    Google Scholar 

  9. Tessier, G., Bardoux, M., Bou, C., Filloy, C., Fournier, D.: Back side thermal imaging of integrated circuits at high spatial resolution. Appl. Phys. Lett. 90(17), 171–172 (2007)

    Article  Google Scholar 

  10. Incropera, F.P., Dewitt, D.P.: Fundamentals of Heat and Mass Transfer, 5th edn, pp. 700–746. Wiley, Hoboken (2001)

    Google Scholar 

  11. Breitenstein, O., Warta, W., Langenkamp, M.: Lock-in Thermography, vol. 10. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02417-7

    Book  Google Scholar 

  12. Cochran, R., Nowroz, A.N., Reda, S.: Post-silicon power characterization using thermal infrared emissions. In: Proceedings of the 16th ACM/IEEE International Symposium on Low Power Electronics and Design, pp. 331–336 (2010)

    Google Scholar 

  13. Reda, S., Cochran, R., Nowroz, A.N.: Improved thermal tracking for processors using hard and soft sensor allocation techniques. IEEE Trans. Comput. 60(6), 841–851 (2011)

    Article  MathSciNet  Google Scholar 

  14. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Institute of Physics Publishing, Bristol (1998)

    Book  Google Scholar 

  15. Reda, S.: Thermal and power characterization of real computing devices. IEEE J. Emerg. Sel. Top. Circuits Syst. 1(2), 76–87 (2011)

    Article  Google Scholar 

  16. Busse, G., Wu, D., Karpen, W.: J. Appl. Phys. 71, 3962 (1992)

    Article  Google Scholar 

  17. Huth, S., Breitenstein, O., Huber, A., Dantz, D., Lambert, U., Altmann, F.: Lock-in IR-thermography-a novel tool for material and device characterization. In: Diffusion and Defect Data Part B Solid State Phenomena, pp. 741–746 (2002)

    Article  Google Scholar 

  18. Nowroz, A., Woods, G., Reda, S.: Improved post-silicon power modeling using AC lock-in techniques. In: 48th ACM/EDAC/IEEE Design Automation Conference, DAC, pp. 101–107 (2011)

    Google Scholar 

  19. Nowroz, A.N., Woods, G., Reda, S.: Power mapping of integrated circuits using AC-based thermography. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(8), 1398–1409 (2013)

    Article  Google Scholar 

  20. Chakraborty, R.S., Narasimhan, S., Bhunia, S.: Hardware Trojan: threats and emerging solutions. In: IEEE International High Level Design Validation and Test Workshop, HLDVT 2009, pp. 166–171 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Cozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cozzi, M., Galliere, JM., Maurine, P. (2018). Thermal Scans for Detecting Hardware Trojans. In: Fan, J., Gierlichs, B. (eds) Constructive Side-Channel Analysis and Secure Design. COSADE 2018. Lecture Notes in Computer Science(), vol 10815. Springer, Cham. https://doi.org/10.1007/978-3-319-89641-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89641-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89640-3

  • Online ISBN: 978-3-319-89641-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics