Skip to main content

Microvascular Changes in the Diabetic Foot

  • Chapter
  • First Online:
The Diabetic Foot

Abstract

Diabetes affects the microcirculation through many different pathological mechanisms, including endothelial dysfunction and abnormal neurovascular control. These functional changes in microvascular function have a compounding relationship with structural changes in the cutaneous microcirculation of the diabetic foot. Ultimately, such adverse adaptations in function and structure contribute to the formation of diabetic foot complications such as ulceration, and in more severe circumstances to amputation. Indeed, diabetes and its associated complications place an enormous economic burden on public health systems, globally, highlighting the need for early intervention and prevention. In recent decades, several noninvasive imaging techniques and tests of microvascular reactivity have evolved that may have the potential to allow clinicians to more accurately predict the risk of foot ulceration in those with diabetes, as well as provide the ability to monitor wound healing rates and determine the success of therapeutic interventions. This chapter will summarize these methods used to assess the cutaneous microcirculation while also describing the respective roles of hyperglycemia, insulin resistance, and inflammation in endothelial dysfunction and its complex relationship with neurovascular function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McMillan DE. Deterioration of the microcirculation in diabetes. Diabetes. 1975;24(10):944–57.

    Article  CAS  PubMed  Google Scholar 

  2. Flynn M d., Tooke J e. Aetiology of diabetic foot ulceration: a role for the microcirculation? Diabet Med. 1992;9(4):320–9.

    Article  PubMed  Google Scholar 

  3. Tooke JE. Microvascular function in human diabetes: a physiological perspective. Diabetes. 1995;44(7):721–6.

    Article  CAS  PubMed  Google Scholar 

  4. Thijssen DH, Black MA, Pyke KE, Padilla J, Atkinson G, Harris RA, et al. Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol Heart Circ Physiol. 2011;300:H2–12.

    Article  CAS  PubMed  Google Scholar 

  5. Braverman IM. The cutaneous microcirculation. J Investig Dermatol Symp Proc. 2000;5:3–9.

    Article  CAS  PubMed  Google Scholar 

  6. Mulvany MJ, Aalkjaer C. Structure and function of small arteries. Physiol Rev. 1990;70(4):921–61.

    Article  CAS  PubMed  Google Scholar 

  7. Oaklander AL, Siegel SM. Cutaneous innervation: form and function. J Am Acad Dermatol. 2005;53(6):1027–37.

    Article  PubMed  Google Scholar 

  8. Roustit M, Cracowski J-L. Assessment of endothelial and neurovascular function in human skin microcirculation. Trends Pharmacol Sci. 2013;34(7):373–84.

    Article  CAS  PubMed  Google Scholar 

  9. Karaca Ü, Schram MT, Houben AJHM, Muris DMJ, Stehouwer CDA. Microvascular dysfunction as a link between obesity, insulin resistance and hypertension. Diabetes Res Clin Pract. 2014;103(3):382–7.

    Article  CAS  PubMed  Google Scholar 

  10. Hellsten Y, Nyberg M, Jensen LG, Mortensen SP. Vasodilator interactions in skeletal muscle blood flow regulation. J Physiol. 2012;590(24):6297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gutiérrez E, Flammer AJ, Lerman LO, Elízaga J, Lerman A, Fernández-Avilés F. Endothelial dysfunction over the course of coronary artery disease. Eur Heart J. 2013;34(41):3175–81.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jia G, Aroor AR, DeMarco VG, Martinez-Lemus LA, Meininger GA, Sowers JR. Vascular stiffness in insulin resistance and obesity. Front Physiol. 2015;6:231.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399(6736):601–5.

    Article  CAS  PubMed  Google Scholar 

  15. Geiger M, Stone A, Mason SN, Oldham KT, Guice KS. Differential nitric oxide production by microvascular and macrovascular endothelial cells. Am J Phys. 1997;273(1 Pt 1):L275–81.

    CAS  Google Scholar 

  16. Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol. 2003;284(1):R1–12.

    Article  CAS  PubMed  Google Scholar 

  17. Félétou M, Huang Y, Vanhoutte PM. Endothelium-mediated control of vascular tone: COX-1 and COX-2 products. Br J Pharmacol. 2011;164(3):894–912.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Bellien J, Joannides R, Richard V, Thuillez C. Modulation of cytochrome-derived epoxyeicosatrienoic acids pathway: a promising pharmacological approach to prevent endothelial dysfunction in cardiovascular diseases? Pharmacol Ther. 2011;131:1–17.

    Article  CAS  PubMed  Google Scholar 

  19. Forsythe RO, Hinchliffe RJ. Assessment of foot perfusion in patients with a diabetic foot ulcer. Diabetes Metab Res Rev. 2016;32:232–8.

    Article  CAS  PubMed  Google Scholar 

  20. Stern MD. In vivo evaluation of microcirculation by coherent light scattering. Nature. 1975;254(5495):56–8.

    Article  CAS  PubMed  Google Scholar 

  21. Roustit M, Cracowski JL. Non-invasive assessment of skin microvascular function in humans: an insight into methods. Microcirculation. 2012;19(1):47–64.

    Article  PubMed  Google Scholar 

  22. Allen J, Howell K. Microvascular imaging: techniques and opportunities for clinical physiological measurements. Physiol Meas. 2014;35(7):R91.

    Article  PubMed  Google Scholar 

  23. Carpentier PH. New techniques for clinical assessment of the peripheral microcirculation. Drugs. 1999;59 Spec No:17–22.

    CAS  PubMed  Google Scholar 

  24. Yip WL. Evaluation of the clinimetrics of transcutaneous oxygen measurement and its application in wound care. Int Wound J. 2015;12(6):625–9.

    Article  PubMed  Google Scholar 

  25. Williams DT, Price P, Harding KG. The influence of diabetes and lower limb arterial disease on cutaneous foot perfusion. J Vasc Surg. 2006;44(4):770–5.

    Article  PubMed  Google Scholar 

  26. Scheeren TWL. Journal of clinical monitoring and computing 2015 end of year summary: tissue oxygenation and microcirculation. J Clin Monit Comput. 2016;30(2):141–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pedersen BL, Baekgaard N, Quistorff B. Muscle mitochondrial function in patients with type 2 diabetes mellitus and peripheral arterial disease: implications in vascular surgery. Eur J Vasc Endovasc Surg. 2009;38(3):356–64.

    Article  CAS  PubMed  Google Scholar 

  28. Boezeman RPE, Moll FL, Ünlü Ç, de Vries J-PPM. Systematic review of clinical applications of monitoring muscle tissue oxygenation with near-infrared spectroscopy in vascular disease. Microvasc Res. 2016;104:11–22.

    Article  PubMed  Google Scholar 

  29. Weingarten MS, Samuels JA, Neidrauer M, Mao X, Diaz D, McGuire J, et al. Diffuse near-infrared spectroscopy prediction of healing in diabetic foot ulcers: a human study and cost analysis. Wound Repair Regen. 2012;20(6):911–7.

    Article  PubMed  Google Scholar 

  30. Neidrauer M, Zubkov L, Weingarten MS, Pourrezaei K, Papazoglou ES. Near infrared wound monitor helps clinical assessment of diabetic foot ulcers. J Diabetes Sci Technol. 2010;4(4):792–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rizzoni D, Porteri E, Guelfi D, Muiesan ML, Valentini U, Cimino A, et al. Structural alterations in subcutaneous small arteries of normotensive and hypertensive patients with non–insulin-dependent diabetes mellitus. Circulation. 2001;103(9):1238–44.

    Article  CAS  PubMed  Google Scholar 

  32. MÅrin P, Andersson B, Krotkiewski M, Björntorp P. Muscle fiber composition and capillary density in women and men with NIDDM. Diabetes Care. 1994;17(5):382–6.

    Article  PubMed  Google Scholar 

  33. Malik RA, Newrick PG, Sharma AK, Jennings A, Ah-See AK, Mayhew TM, et al. Microangiopathy in human diabetic neuropathy: relationship between capillary abnormalities and the severity of neuropathy. Diabetologia. 1989;32(2):92–102.

    Article  CAS  PubMed  Google Scholar 

  34. Malik RA, Metcalfe J, Sharma AK, Day JL, Rayman G. Skin epidermal thickness and vascular density in type 1 diabetes. Diabet Med. 1992;9(3):263–7.

    Article  CAS  PubMed  Google Scholar 

  35. Khodabandehlou T, Zhao H, Vimeux M, Le Dévéhat C. The autoregulation of the skin microcirculation in healthy subjects and diabetic patients with and without vascular complications. Clin Hemorheol Microcirc. 1997;17(5):357–62.

    CAS  PubMed  Google Scholar 

  36. Raskin P, Pietri AO, Unger R, Shannon WAJ. The effect of diabetic control on the width of skeletal-muscle capillary basement membrane in patients with type I diabetes mellitus. N Engl J Med. 1983;309(25):1546–50.

    Article  CAS  PubMed  Google Scholar 

  37. Walløe L. Arterio-venous anastomoses in the human skin and their role in temperature control. Temperature. 2016;3(1):92–103.

    Article  Google Scholar 

  38. Kenny GP, Stapleton JM, Yardley JE, Boulay P, Sigal RJ. Older adults with type 2 diabetes store more heat during exercise. Med Sci Sports Exerc. 2013;45(10):1906–14.

    Article  CAS  PubMed  Google Scholar 

  39. Carter MR, McGinn R, Barrera-Ramirez J, Sigal RJ, Kenny GP. Impairments in local heat loss in type 1 diabetes during exercise in the heat. Med Sci Sports Exerc. 2014;46(12):2224–33.

    Article  PubMed  Google Scholar 

  40. McNally PG, Watt PAC, Rimmer T, Burden AC, Hearnshaw JR, Thurston H. Impaired contraction and endothelium-dependent relaxation in isolated resistance vessels from patients with insulin-dependent diabetes mellitus. Clin Sci. 1994;87(1):31–6.

    Article  CAS  Google Scholar 

  41. Makimattila S, Virkamaki A, Groop P-H, Cockcroft J, Utriainen T, Fagerudd J, et al. Chronic hyperglycemia impairs endothelial function and insulin sensitivity via different mechanisms in insulin-dependent diabetes mellitus. Circulation. 1996;94(6):1276–82.

    Article  CAS  PubMed  Google Scholar 

  42. Hogikyan RV, Galecki AT, Pitt B, Halter JB, Greene DA, Supiano MA. Specific impairment of endothelium-dependent vasodilation in subjects with type 2 diabetes independent of obesity. J Clin Endocrinol Metab. 1998;83(6):1946–52.

    CAS  PubMed  Google Scholar 

  43. Tibiriçá E, Rodrigues E, Cobas R, Gomes MB. Increased functional and structural skin capillary density in type 1 diabetes patients with vascular complications. Diabetol Metab Syndr. 2009;1:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Rayman G, Williams SA, Spencer PD, Smaje LH, Wise PH, Tooke JE. Impaired microvascular hyperaemic response to minor skin trauma in type I diabetes. Br Med J (Clin Res Ed). 1986;292(6531):1295.

    Article  CAS  Google Scholar 

  45. Khan F, Elhadd TA, Greene SA, Belch JJ. Impaired skin microvascular function in children, adolescents, and young adults with type 1 diabetes. Diabetes Care. 2000;23(2):215–20.

    Article  CAS  PubMed  Google Scholar 

  46. Krishnan STM, Baker NR, Carrington AL, Rayman G. Comparative roles of microvascular and nerve function in foot ulceration in type 2 diabetes. Diabetes Care. 2004;27(6):1343–8.

    Article  PubMed  Google Scholar 

  47. Jaap AJ, Hammersley MS, Shore AC, Tooke JE. Reduced microvascular hyperaemia in subjects at risk of developing type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1994;37(2):214–6.

    Article  CAS  PubMed  Google Scholar 

  48. Veves A, Akbari CM, Primavera J, Donaghue VM, Zacharoulis D, Chrzan JS, et al. Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease, and foot ulceration. Diabetes. 1998;47(3):457–63.

    Article  CAS  PubMed  Google Scholar 

  49. Krishnan STM, Rayman G. The LDIflare: a novel test of C-fiber function demonstrates early neuropathy in type 2 diabetes. Diabetes Care. 2004;27(12):2930–5.

    Article  PubMed  Google Scholar 

  50. Tomešová J, Gruberova J, Lacigova S, Cechurova D, Jankovec Z, Rusavy Z. Differences in skin microcirculation on the upper and lower extremities in patients with diabetes mellitus: relationship of diabetic neuropathy and skin microcirculation. Diabetes Technol Ther. 2013;15(11):968–75.

    Article  PubMed  CAS  Google Scholar 

  51. Caballero AE, Arora S, Saouaf R, Lim SC, Smakowski P, Park JY, et al. Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes. 1999;48(9):1856–62.

    Article  CAS  PubMed  Google Scholar 

  52. Dinh T, Tecilazich F, Kafanas A, Doupis J, Gnardellis C, Leal E, et al. Mechanisms involved in the development and healing of diabetic foot ulceration. Diabetes. 2012;61(11):2937–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vinik AI, Erbas T, Park TS, Stansberry KB, Scanelli JA, Pittenger GL. Dermal neurovascular dysfunction in type 2 diabetes. Diabetes Care. 2001;24(8):1468–75.

    Article  CAS  PubMed  Google Scholar 

  54. Szolcsányi J, Sándor Z. Multisteric TRPV1 nocisensor: a target for analgesics. Trends Pharmacol Sci. 2012;33(12):646–55.

    Article  PubMed  CAS  Google Scholar 

  55. Tóth BI, Oláh A, Szöllősi AG, Bíró T. TRP channels in the skin. Br J Pharmacol. 2014;171(10):2568–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Johnson JM, Minson CT, Kellogg DL. Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. In: Terjung R, editor. Comprehensive physiology [Internet]. Hoboken, NJ: John Wiley & Sons, Inc.; 2014. p. 33–89. [cited 2016 Jul 26]. http://doi.wiley.com/10.1002/cphy.c130015.

    Chapter  Google Scholar 

  57. Vas PRJ, Green AQ, Rayman G. Small fibre dysfunction, microvascular complications and glycaemic control in type 1 diabetes: a case–control study. Diabetologia. 2011;55(3):795–800.

    Article  PubMed  CAS  Google Scholar 

  58. Caselli A, Uccioli L, Khaodhiar L, Veves A. Local anesthesia reduces the maximal skin vasodilation during iontophoresis of sodium nitroprusside and heating. Microvasc Res. 2003;66(2):134–9.

    Article  CAS  PubMed  Google Scholar 

  59. Gibbons CH, Freeman R, Tecilazich F, Dinh T, Lyons TE, Gnardellis C, et al. The evolving natural history of neurophysiologic function in patients with well-controlled diabetes. J Peripher Nerv Syst. 2013;18(2):153–61.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rutkove SB, Veves A, Mitsa T, Nie R, Fogerson PM, Garmirian LP, et al. Impaired distal thermoregulation in diabetes and diabetic polyneuropathy. Diabetes Care. 2009;32(4):671–6.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Charkoudian N. Mechanisms and modifiers of reflex induced cutaneous vasodilation and vasoconstriction in humans. J Appl Physiol. 2010;109:1221–8.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Strom NA, Meuchel LW, Mundy DW, Sawyer JR, Roberts SK, Kingsley-Berg SM, et al. Cutaneous sympathetic neural responses to body cooling in type 2 diabetes mellitus. Auton Neurosci. 2011;159(1–2):15–9.

    Article  PubMed  Google Scholar 

  63. Quattrini C, Jeziorska M, Boulton AJM, Malik RA. Reduced vascular endothelial growth factor expression and intra-epidermal nerve fiber loss in human diabetic neuropathy. Diabetes Care. 2008;31(1):140–5.

    Article  PubMed  Google Scholar 

  64. Shah AS, Gao Z, Dolan LM, Dabelea D, D’Agostino RB, Urbina EM. Assessing endothelial dysfunction in adolescents and young adults with type 1 diabetes mellitus using a non-invasive heat stimulus. Pediatr Diabetes. 2015;16(6):434–40.

    Article  PubMed  Google Scholar 

  65. Heimhalt-El Hamriti M, Schreiver C, Noerenberg A, Scheffler J, Jacoby U, Haffner D, et al. Impaired skin microcirculation in paediatric patients with type 1 diabetes mellitus. Cardiovasc Diabetol. 2013;12:115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kilo S, Berghoff M, Hilz M, Freeman R. Neural and endothelial control of the microcirculation in diabetic peripheral neuropathy. Neurology. 2000;54(6):1246–52.

    Article  CAS  PubMed  Google Scholar 

  67. Gomes MB, Matheus AS, Tibirica E. Evaluation of microvascular endothelial function in patients with type 1 diabetes using laser-Doppler perfusion monitoring: which method to choose? Microvasc Res. 2008;76(2):132–3.

    Article  CAS  PubMed  Google Scholar 

  68. Durand S, Tartas M, Bouye P, Koitka A, Saumet JL, Abraham P. Prostaglandins participate in the late phase of the vascular response to acetylcholine iontophoresis in humans. J Physiol. 2004;561(Pt 3):811–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Morris SJ, Shore AC, Tooke JE. Responses of the skin microcirculation to acetylcholine and sodium nitroprusside in patients with NIDDM. Diabetologia. 1995;38(11):1337–44.

    Article  CAS  PubMed  Google Scholar 

  70. Beer S, Feihl F, Ruiz J, Juhan-Vague I, Aillaud M-F, Wetzel SG, et al. Comparison of skin microvascular reactivity with hemostatic markers of endothelial dysfunction and damage in type 2 diabetes. Vasc Health Risk Manag. 2008;4(6):1449–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Arora S, Smakowski P, Frykberg RG, Simeone LR, Freeman R, LoGerfo FW, et al. Differences in foot and forearm skin microcirculation in diabetic patients with and without neuropathy. Diabetes Care. 1998;21(8):1339–44.

    Article  CAS  PubMed  Google Scholar 

  72. Saad MI, Abdelkhalek TM, Saleh MM, Kamel MA, Youssef M, Tawfik SH, et al. Insights into the molecular mechanisms of diabetes-induced endothelial dysfunction: focus on oxidative stress and endothelial progenitor cells. Endocrine. 2015;50(3):537–67.

    Article  CAS  PubMed  Google Scholar 

  73. Szabo C. Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br J Pharmacol. 2009;156(5):713–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kizub IV, Klymenko KI, Soloviev AI. Protein kinase C in enhanced vascular tone in diabetes mellitus. Int J Cardiol. 2014;174(2):230–42.

    Article  PubMed  Google Scholar 

  75. Rask-Madsen C, King GL. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab. 2013;17(1):20–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tuttle KR, McGill JB, Bastyr EJ III, Poi KK, Shahri N, Anderson PW. Effect of ruboxistaurin on albuminuria and estimated GFR in people with diabetic peripheral neuropathy: results from a randomized trial. Am J Kidney Dis. 2015;65(4):634–6.

    Article  CAS  PubMed  Google Scholar 

  77. Sheetz MJ, Aiello LP, Davis MD, Danis R, Bek T, Cunha-Vaz J, et al. The effect of the oral PKC β inhibitor ruboxistaurin on vision loss in two phase 3 studies. Invest Opthalmol Vis Sci. 2013;54(3):1750.

    Article  CAS  Google Scholar 

  78. Khamaisi M, Katagiri S, Keenan H, Park K, Maeda Y, Li Q, et al. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts. J Clin Invest. 2016;126(3):837–53.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.

    Article  CAS  PubMed  Google Scholar 

  80. Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245–313.

    Article  CAS  PubMed  Google Scholar 

  81. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products. Circulation. 2006;114(6):597–605.

    Article  CAS  PubMed  Google Scholar 

  82. Garcia Soriano F, Virág L, Jagtap P, Szabó É, Mabley JG, Liaudet L, et al. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med. 2001;7(1):108–13.

    Article  CAS  PubMed  Google Scholar 

  83. Zhou X, Patel D, Sen S, Shanmugam V, Sidawy A, Mishra L, et al. Poly-ADP-ribose polymerase inhibition enhances ischemic and diabetic wound healing by promoting angiogenesis. J Vasc Surg. 2016;65(4):1161–9.

    Article  PubMed  Google Scholar 

  84. Ziegler D, Strom A, Brüggemann J, Ziegler I, Ringel B, Püttgen S, et al. Overexpression of cutaneous mitochondrial superoxide dismutase in recent-onset type 2 diabetes. Diabetologia. 2015;58(7):1621–5.

    Article  CAS  PubMed  Google Scholar 

  85. Kimura F, Hasegawa G, Obayashi H, Adachi T, Hara H, Ohta M, et al. Serum extracellular superoxide dismutase in patients with type 2 diabetes. Diabetes Care. 2003;26(4):1246–50.

    Article  CAS  PubMed  Google Scholar 

  86. Al-Kateb H, Boright AP, Mirea L, Xie X, Sutradhar R, Mowjoodi A, et al. Multiple superoxide dismutase 1/splicing factor serine alanine 15 variants are associated with the development and progression of diabetic nephropathy. Diabetes. 2008;57(1):218–28.

    Article  CAS  PubMed  Google Scholar 

  87. Mohammedi K, Bellili-Muñoz N, Driss F, Roussel R, Seta N, Fumeron F, et al. Manganese superoxide dismutase ( SOD2 ) polymorphisms, plasma advanced oxidation protein products (AOPP) concentration and risk of kidney complications in subjects with type 1 diabetes. PLoS One. 2014;9(5):e96916.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Roche C, Guerrot D, Harouki N, Duflot T, Besnier M, Rémy-Jouet I, et al. Impact of soluble epoxide hydrolase inhibition on early kidney damage in hyperglycemic overweight mice. Prostaglandins Other Lipid Mediat. 2015;120:148–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lorthioir A, Guerrot D, Joannides R, Bellien J. Diabetic CVD—soluble epoxide hydrolase as a target. Cardiovasc Hematol Agents Med Chem. 2012;10(3):212–22.

    Article  CAS  PubMed  Google Scholar 

  90. Kim J, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction. Circulation. 2006;113(15):1888–904.

    Article  PubMed  Google Scholar 

  91. Rask-Madsen C, Li Q, Freund B, Feather D, Abramov R, Wu I-H, et al. Loss of insulin signaling in vascular endothelial cells accelerates atherosclerosis in apolipoprotein E null mice. Cell Metab. 2010;11(5):379–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest. 1996;97(11):2601–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Natali A, Toschi E, Baldeweg S, Ciociaro D, Favilla S, Saccà L, et al. Clustering of insulin resistance with vascular dysfunction and low-grade inflammation in type 2 diabetes. Diabetes. 2006;55(4):1133–40.

    Article  CAS  PubMed  Google Scholar 

  94. de Jongh RT, Serné EH, Ijzerman RG, de Vries G, Stehouwer CDA. Free fatty acid levels modulate microvascular function. Diabetes. 2004;53(11):2873–82.

    Article  PubMed  Google Scholar 

  95. Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34(31):2436–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tellechea A, Leal EC, Kafanas A, Auster ME, Kuchibhotla S, Ostrovsky Y, et al. Mast cells regulate wound healing in diabetes. Diabetes. 2016;65(7):2006–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vincent AM, Callaghan BC, Smith AL, Feldman EL. Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurol. 2011;7(10):573–83.

    Article  CAS  PubMed  Google Scholar 

  98. Hao W, Tashiro S, Hasegawa T, Sato Y, Kobayashi T, Tando T, et al. Hyperglycemia promotes Schwann cell de-differentiation and de-myelination via sorbitol accumulation and Igf1 protein down-regulation. J Biol Chem. 2015;290(28):17106–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Malik RA, Tesfaye S, Thompson SD, Veves A, Sharma AK, Boulton AJM, et al. Endoneurial localisation of microvascular damage in human diabetic neuropathy. Diabetologia. 1993;36(5):454–9.

    Article  CAS  PubMed  Google Scholar 

  100. Chapouly C, Yao Q, Vandierdonck S, Larrieu-Lahargue F, Mariani JN, Gadeau A-P, et al. Impaired Hedgehog signalling-induced endothelial dysfunction is sufficient to induce neuropathy: implication in diabetes. Cardiovasc Res. 2016;109(2):217–27.

    Article  CAS  PubMed  Google Scholar 

  101. Roustit M, Loader J, Deusenbery C, Baltzis D, Veves A. Endothelial dysfunction as a link between cardiovascular risk factors and peripheral neuropathy in diabetes. J Clin Endocrinol Metab. 2016;101(9):3401–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Suri A, Szallasi A. The emerging role of TRPV1 in diabetes and obesity. Trends Pharmacol Sci. 2008;29(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  103. Koitka A, Abraham P, Bouhanick B, Sigaudo-Roussel D, Demiot C, Saumet JL. Impaired pressure-induced vasodilation at the foot in young adults with type 1 diabetes. Diabetes. 2004;53(3):721–5.

    Article  CAS  PubMed  Google Scholar 

  104. Fromy B, Abraham P, Bouvet C, Bouhanick B, Fressinaud P, Saumet JL. Early decrease of skin blood flow in response to locally applied pressure in diabetic subjects. Diabetes. 2002;51(4):1214–7.

    Article  CAS  PubMed  Google Scholar 

  105. Fromy B, Lingueglia E, Sigaudo-Roussel D, Saumet JL, Lazdunski M. Asic3 is a neuronal mechanosensor for pressure-induced vasodilation that protects against pressure ulcers. Nat Med. 2012;18(8):1205–7.

    Article  CAS  PubMed  Google Scholar 

  106. Crawford F, Cezard G, Chappell FM, Murray GD, Price JF, Sheikh A, et al. A systematic review and individual patient data meta-analysis of prognostic factors for foot ulceration in people with diabetes: the international research collaboration for the prediction of diabetic foot ulcerations (PODUS). Health Technol Assess. 2015;19(57):1–210.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Monteiro-Soares M, Boyko EJ, Ribeiro J, Ribeiro I, Dinis-Ribeiro M. Predictive factors for diabetic foot ulceration: a systematic review. Diabetes Metab Res Rev. 2012;28(7):574–600.

    Article  CAS  PubMed  Google Scholar 

  108. Chabbert-Buffet N, LeDevehat C, Khodabandhelou T, Allaire E, Gaitz JP, Tribout L, et al. Evidence for associated cutaneous microangiopathy in diabetic patients with neuropathic foot ulceration. Diabetes Care. 2003;26(3):960–1.

    Article  PubMed  Google Scholar 

  109. Wang Z, Hasan R, Firwana B, Elraiyah T, Tsapas A, Prokop L, et al. A systematic review and meta-analysis of tests to predict wound healing in diabetic foot. J Vasc Surg. 2016;63(2 Suppl):29S–36S.e2.

    Article  PubMed  Google Scholar 

  110. Hingorani A, LaMuraglia GM, Henke P, Meissner MH, Loretz L, Zinszer KM, et al. The management of diabetic foot: a clinical practice guideline by the Society for Vascular Surgery in collaboration with the American Podiatric Medical Association and the Society for Vascular Medicine. J Vasc Surg. 2016;63(2 Suppl):3S–21S.

    Article  PubMed  Google Scholar 

  111. Vouillarmet J, Bourron O, Gaudric J, Lermusiaux P, Millon A, Hartemann A. Lower-extremity arterial revascularization: is there any evidence for diabetic foot ulcer-healing? Diabetes Metab. 2016;42(1):4–15.

    Article  CAS  PubMed  Google Scholar 

  112. Arora S, Pomposelli F, LoGerfo FW, Veves A. Cutaneous microcirculation in the neuropathic diabetic foot improves significantly but not completely after successful lower extremity revascularization. J Vasc Surg. 2002;35(3):501–5.

    Article  PubMed  Google Scholar 

  113. Brunt VE, Fujii N, Minson CT. Endothelial-derived hyperpolarization contributes to acetylcholine-mediated vasodilation in human skin in a dose-dependent manner. J Appl Physiol. 2015;119(9):1015–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jeffcoate WJ, Clark DJ, Savic N, Rodmell PI, Hinchliffe RJ, Musgrove A, et al. Use of HSI to measure oxygen saturation in the lower limb and its correlation with healing of foot ulcers in diabetes. Diabet Med. 2015;32(6):798–802.

    Article  CAS  PubMed  Google Scholar 

  115. Khaodhiar L, Dinh T, Schomacker KT, Panasyuk SV, Freeman JE, Lew R, et al. The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes. Diabetes Care. 2007;30(4):903–10.

    Article  PubMed  Google Scholar 

  116. Roustit M, Millet C, Blaise S, Dufournet B, Cracowski JL. Excellent reproducibility of laser speckle contrast imaging to assess skin microvascular reactivity. Microvasc Res. 2010;80(3):505–11.

    Article  CAS  PubMed  Google Scholar 

  117. Nakagami G, Sari Y, Nagase T, Iizaka S, Ohta Y, Sanada H. Evaluation of the usefulness of skin blood flow measurements by laser speckle flowgraphy in pressure-induced ischemic wounds in rats. Ann Plast Surg. 2010;64(3):351–4.

    Article  CAS  PubMed  Google Scholar 

  118. Minniti CP, Gorbach AM, Xu D, Hon YY, Delaney K-M, Seidel M, et al. Topical sodium nitrite for chronic leg ulcers in patients with sickle cell anaemia: a phase 1 dose-finding safety and tolerability trial. Lancet Haematol. 2014;1(3):e95.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Sangiorgi S, Manelli A, Reguzzoni M, Ronga M, Protasoni M, Dell’Orbo C. The cutaneous microvascular architecture of human diabetic toe studied by corrosion casting and scanning electron microscopy analysis. Anat Rec Adv Integr Anat Evol Biol. 2010;293(10):1639–45.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Roustit PharmD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roustit, M., Loader, J., Baltzis, D., Zhao, W., Veves, A. (2018). Microvascular Changes in the Diabetic Foot. In: Veves, A., Giurini, J., Guzman, R. (eds) The Diabetic Foot. Contemporary Diabetes. Humana, Cham. https://doi.org/10.1007/978-3-319-89869-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89869-8_10

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-319-89868-1

  • Online ISBN: 978-3-319-89869-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics