Skip to main content

Homogenization of Stochastic Parabolic Equations in Varying Domains

  • Chapter
  • First Online:
Shape Optimization, Homogenization and Optimal Control

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 169))

Abstract

We present homogenization results for stochastic semilinear parabolic equations in varying domains which are stochastic counterparts of the some fundamental results of Khruslov and Marchenko, Skrypnik, Cioranescu, Dal Maso and Murat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allaire, Grégoire Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992), no. 6, 1482–1518.

    Google Scholar 

  2. Bensoussan, A.: Homogenization of a class of stochastic partial differential equations, In Composite Media and Homogenization Theory, Birkhauser, Basel and Boston, MA, 1991, pp. 47–65.

    Google Scholar 

  3. Bensoussan, A.; Lions, J.L.; Papanicolaou, G.C.: Asymptotic analysis for periodic structures, North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  4. Bensoussan A.: Some existence results for stochastic partial differential equations, in Stochastic Partial Differential Equations and Applications (Trento, 1990), Pitman Res. Notes Math. Ser. 268, Longman Scientific and Technical, Harlow, UK, 1992, pp. 37–53.

    Google Scholar 

  5. Bourgeat, A.; Mikelić, A.; Wright, S.: Stochastic two-scale convergence in the mean and applications. J. Reine Angew. Math. 456 (1994), 19–51.

    MathSciNet  MATH  Google Scholar 

  6. Buttazzo, Giuseppe; Dal Maso, Gianni Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions. Appl. Math. Optim. 23 (1991), no. 1, 17–49.

    Google Scholar 

  7. Casado Diaz, J., Gayte, I.: The two-scale convergence method applied to generalized Besicovitch spaces. Proc. R. Soc. Lond. A 458, 2925–2946 (2002).

    Article  MathSciNet  Google Scholar 

  8. Cioranescu, D.; Damlamian, A.; Griso, G. The periodic unfolding method in homogenization. In “Assyr, Banasiak, Damlamian, Sango: Multiple scales problems in biomathematics, mechanics, physics and numerics”, 1–35, GAKUTO Internat. Ser. Math. Sci. Appl., 31, Gakkō tosho, Tokyo, 2009.

    Google Scholar 

  9. Cioranescu, Doina; Donato, Patrizia An introduction to homogenization. Oxford Lecture Series in Mathematics and its Applications, 17. The Clarendon Press, Oxford University Press, New York, 1999.

    Google Scholar 

  10. Cioranescu, D; Donato, P.; Murat, F.; Zuazua, E.: Homogenization and corrector for the wave equation in domains with small holes, Ann. Scuola Norm. Sup. Pisa 18 (1991), 251–293.

    MathSciNet  MATH  Google Scholar 

  11. Cioranescu, Doina; Murat, François A strange term coming from nowhere [MR0652509; MR0670272]. Topics in the mathematical modelling of composite materials, 45–93, Progr. Nonlinear Differential Equations Appl., 31, Birkhäuser Boston, Boston, MA, 1997.

    Google Scholar 

  12. Da Prato G., Zabczyk J.: Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  13. Dal Maso, Gianni; Mosco, Umberto Wiener’s criterion and Γ-convergence. Appl. Math. Optim. 15 (1987), no. 1, 15–63

    Article  MathSciNet  Google Scholar 

  14. Dal Maso, G.; Murat, F.: Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), no. 2, 239–290.

    Google Scholar 

  15. Dal Maso, Gianni An introduction to Γ -convergence. Progress in Nonlinear Differential Equations and their Applications, 8. Birkhäuser Boston, Inc., Boston, MA, 1993. xiv+340 pp.

    Google Scholar 

  16. L.C. Evans, Partial Differential Equations : Graduate text in Maths, AMS, Providence, 1998.

    Google Scholar 

  17. L.C. Evans, R.F. Gariepy : Measure Theory and Fine Properties of Functions, CRS Press, 1992.

    MATH  Google Scholar 

  18. Gilbarg, David; Trudinger, Neil S.: Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.

    Google Scholar 

  19. Ichihara, Naoyuki.: Homogenization for stochastic partial differential equations derived from nonlinear filterings with feedback. J. Math. Soc. Japan 57 (2005), no. 2, 593–603.

    Google Scholar 

  20. Ichihara, Naoyuki.: Homogenization problem for stochastic partial differential equations of Zakai type. Stoch. Stoch. Rep. 76 (2004), no. 3, 243–266.

    Google Scholar 

  21. Kozlov, S. M. The averaging of random operators. (Russian) Mat. Sb. (N.S.) 109(151) (1979), no. 2, 188–202, 327.

    Google Scholar 

  22. Marchenko, V.A.; Khruslov, E.Ya.: Boundary value problems in regions with fine grained boundaries, Naukova Dumka, Kiev, 1974.

    Google Scholar 

  23. Marchenko, V. A.; Khruslov, E. Ya.: Homogenization of partial differential equations. Progress in Mathematical Physics, 46. Birkh äuser, Boston, 2006.

    Google Scholar 

  24. Mohammed, M.; Sango, M., Homogenization of linear hyperbolic stochastic partial differential equation with rapidly oscillating coefficients: the two scale convergence method. Asymptot. Anal. 91 (2015), no. 3–4, 341–371.

    MathSciNet  MATH  Google Scholar 

  25. Mohammed, M.; Sango, M.,Homogenization of Neumann problem for hyperbolic stochastic partial differential equations in perforated domains. Asymptot. Anal. 97 (2016), no. 3–4, 301–327.

    Article  MathSciNet  Google Scholar 

  26. Mohammed, M,; Homogenization of nonlinear hyperbolic stochastic equation via Tartar’s method. J. Hyperbolic Differ. Equ. 14 (2017), no. 2, 323–340.

    Google Scholar 

  27. Nagase, N.: Remarks on nonlinear stochastic partial differential equations : an application of the splitting-up method, SIAM J. Control & Optim., 33(1995), 1716–1730.

    Article  MathSciNet  Google Scholar 

  28. Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989), no. 3, 608–623.

    Article  MathSciNet  Google Scholar 

  29. Nguetseng, G., Homogenization structures and applications I, Z. Anal. Anwend 22 (2003) 73–107.

    Article  MathSciNet  Google Scholar 

  30. Nguetseng, Gabriel; Sango, Mamadou; Woukeng, Jean Louis Reiterated ergodic algebras and applications. Comm. Math. Phys. 300 (2010), no. 3, 835–876.

    Google Scholar 

  31. Papanicolaou, G.C.; Varadhan, S.R.S: Diffusions in regions with many small holes, Stochastic Differential Systems : Filtering and Control, Lecture Notes in Control and Information Sciences, Vol. 25, Springer Verlag, Berlin, …, 1980, pp190–206.

    Google Scholar 

  32. Papanicolaou, G.C.; Varadhan S.R.S.: Boundary value problems with rapidly oscillating random coefficients, Proceedings of a colloquium on random fields : rigorous results in Statistical Mechanics and Quantum Field Theory, Colloq. Math. Soc. J. Bolyai, North-Holland, Amsterdam, 1979.

    Google Scholar 

  33. Prokhorov, Yu. V.: Convergence of random processes and limit theorems in probability theory. Teor. Veroyatnost. i Primenen. 1 (1956), 177–238.

    MathSciNet  MATH  Google Scholar 

  34. Razafimandimby, Paul André; Woukeng, Jean Louis Homogenization of nonlinear stochastic partial differential equations in a general ergodic environment. Stoch. Anal. Appl. 31 (2013), no. 5, 755–784.

    Google Scholar 

  35. Razafimandimby, Paul André; Sango, Mamadou; Woukeng, Jean Louis Homogenization of a stochastic nonlinear reaction-diffusion equation with a large reaction term: the almost periodic framework. J. Math. Anal. Appl. 394 (2012), no. 1, 186–212.

    Google Scholar 

  36. Sango, M.: Asymptotic behavior of a stochastic evolution problem in a varying domain. Stochastic Anal. Appl. 20 (2002), no. 6, 1331–1358.

    Article  MathSciNet  Google Scholar 

  37. Sango, M.: Homogenization of the Dirichlet problem for a system of quasilinear elliptic equations in a domain with fine-grained boundary. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), no. 2, 183–212.

    Article  MathSciNet  Google Scholar 

  38. Sango, M.: Pointwise a priori estimates for solution of a system of quasilinear elliptic equation. Appl. Anal. 80 (2001), no. 3–4, 367–378.

    MathSciNet  MATH  Google Scholar 

  39. Sango, M.: Homogenization of stochastic semilinear parabolic equations with non-Lipschitz forcings in domains with fine grained boundaries. Commun. Math. Sci. 12 (2014), no. 2, 345–382.

    Article  MathSciNet  Google Scholar 

  40. Sango, M.; Woukeng, J-L.: Stochastic sigma-convergence and applications, Dynamics of Partial Differential Equations, 8 (2011), 4, 261–310.

    Google Scholar 

  41. Simon, J.: Compact sets in the space \(L^{p}\left (0,T;B\right ) \), Annali Mat. Pura Appl., 1987, 146, IV, 65–96.

    Google Scholar 

  42. Skorokhod, A. V.: Limit theorems for stochastic processes. Teor. Veroyatnost. i Primenen. 1 (1956), 289–319.

    MathSciNet  MATH  Google Scholar 

  43. Skrypnik I.V.: Methods for analysis of nonlinear elliptic boundary value problems, Nauka, Moscow, 1990. English translation in : Translations of Mathematical Monographs, 139, AMS, Providence, 1994.

    Google Scholar 

  44. Skrypnik, I. V.: Averaging of quasilinear parabolic problems in domains with fine-grained boundaries. (Russian) Differentsial’nye Uravneniya 31 (1995), no. 2, 350–363, 368; translation in Differential Equations 31 (1995), no. 2, 327–339.

    Google Scholar 

  45. Wang, W.; Cao, D.; Duan, J.: Effective macroscopic dynamics of stochastic partial differential equations in perforated domains. SIAM J. Math. Anal. 38 (2006/07), no. 5, 1508–1527

    Google Scholar 

  46. Wang, W.; Duan, J.: Homogenized dynamics of stochastic partial differential equations with dynamical boundary conditions. Comm. Math. Phys. 275 (2007), no. 1, 163–186.

    Article  MathSciNet  Google Scholar 

  47. Zhikov, V. V.; Kozlov, S.M.; Oleinik, O. A.: Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994.

    Google Scholar 

  48. Zhikov, V.V., Krivenko, E.V.: Homogenization of singularly perturbed elliptic operators. Matem. Zametki. 33, 571–582 (1983)

    MATH  Google Scholar 

Download references

Acknowledgements

The research of the authors is supported by the National Research Foundation of South Africa under the grant CGRR 93459. The support of DFG and AIMS for the participation of Mamadou Sango to the AIMS-DFG workshop in Mbour, Senegal is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammed, M.A.Y., Sango, M. (2018). Homogenization of Stochastic Parabolic Equations in Varying Domains. In: Schulz, V., Seck, D. (eds) Shape Optimization, Homogenization and Optimal Control . International Series of Numerical Mathematics, vol 169. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-90469-6_2

Download citation

Publish with us

Policies and ethics