Skip to main content

Transgenic Research on Tomato: Problems, Strategies, and Achievements

  • Chapter
  • First Online:
Biotechnologies of Crop Improvement, Volume 2

Abstract

Tomato is a climacteric fruit; it is widely consumed as vegetables worldwide either raw or cooked owing to the antioxidative and anticancer properties of lycopene, a dynamic carotenoid pigment of tomato. Nonetheless, since the past few decades, the productivity of tomato is compromised by an array of biotic and abiotic stresses along with deterioration of desirable quality parameters. Consequently, the development of stress-tolerant quality crops is a strategic challenge for agricultural biotechnology. Genetic transformation approach permits to insert defined gene simultaneously avoiding the elimination of any intrinsic genetic attributes unlike the occasion of conventional in situ or true in vitro screening. Till date, a number of attempts have been made to mitigate biotic and abiotic stress on tomato keeping the improvement of quality parameters in mind. Majority of such modifications comprise of the expression of stress-inducible genes, manipulation in the metabolic pathways, or the accumulation of low molecular compounds that function critically in retaining the agility of reactions. In this chapter, we offer an overview of the strategies based on frequently selected target sequences or molecules that are genetically transferred or modified to attain genetically transformed tomatoes tolerant to environmental stresses as well as to improve the quality traits of its fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas DE, Abdallah NA, Madkour MM (2009) Production of transgenic tomato plants with enhanced resistance against the fungal pathogen Fusarium oxysporum. Arab J Biotech 12(1):73–84

    Google Scholar 

  • Abdallah NA, Shah D, Abbas D et al (2010) Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt. GM Crops 1(5):344–350

    Article  PubMed  Google Scholar 

  • Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    Article  PubMed  CAS  Google Scholar 

  • Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, Yativ M, Domınguez E, Wang Z, De Vos RC, Jetter R, Schreiber L, Heredia A, Rogachev I, Aharoni A (2009) Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genet 512:e1000777

    Article  CAS  Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier, New York

    Google Scholar 

  • Alćazar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco TAF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  CAS  Google Scholar 

  • Alhagdow M, Mounet F, Gilbert L, Nunes-Nesi A, Garcia V, Just D, Petit J, Beauvoit B, Fernie AR, Rothan C, Baldet P (2007) Silencing of the mitochondrial ascorbate synthesizing enzyme L-galactono-1,4-lactone dehydrogenase (L-GalLDH) affects plant and fruit development in tomato. Plant Physiol 145:1408–1422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Álvarez-Viveros MF, Inostroza-Blancheteau C, Timmermann T, González M, Arce-Johnson P (2013) Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress. Mol Biol Rep (4):3281–3290

    Article  PubMed  CAS  Google Scholar 

  • Antignus Y, Vunsh R, Lachman O, Pearlsman M, Maslenis L, Hananya U, Rosner A (2004) Truncated Rep gene originated from tomato yellow leaf curl virus – Israel [Mild] confers strain-specific resistance in transgenic tomato. Ann Appl Biol 144:39–44

    Article  Google Scholar 

  • Arrillaga I, Gil Mascarell R, Gisbert C, Sales E, Montesinos C, Serrano R, Moreno V (1998) Expression of the yeast HAL2 gene in tomato increases the in vitro salt tolerance of transgenic progenies. Plant Sci 136:219–226

    Article  CAS  Google Scholar 

  • Bai Y, Pavan S, Zheng Z et al (2008) Naturally occurring broad-spectrum powdery mildew resistance in a central American tomato accession is caused by loss of Mlo function. Mol Plant Microbe Interact 21:30–39

    Article  PubMed  CAS  Google Scholar 

  • Balaji V, Mayrose M, Sherf O et al (2008) Tomato transcriptional changes in response to Clavibacter michiganensis subsp. michiganensis reveal a role for ethylene in disease development. Plant Physiol 146(4):1797–1809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baldwin EA, Scott JW, Shewmaker CK, Schuch W (2000) Flavor trivia and tomato aroma: biochemistry and possible mechanisms for control of important aroma components. Hort Sci 35:1013–1021

    CAS  Google Scholar 

  • Ballester AR, Molthoff J, de Vos R, te Lintel Hekkert B, Orzaez D, Fernandez-Moreno JP, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M, Granell A, Bovy A (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit colour. Plant Physiol 1:71–84

    Article  CAS  Google Scholar 

  • Banerjee J, Das N, Dey P, Maiti MK (2010) Transgenically expressed rice germin-like protein1 in tobacco causes hyper-accumulation of H2O2 and reinforcement of the cell wall components. Biochem Biophys Res Commun 402 (4):637–643

    Article  PubMed  CAS  Google Scholar 

  • Banerjee J, Sahoo DK, Dey N, Houtz RL, Maiti IB, Pandey GK (2013) An intergenic region shared by At4g35985 and At4g35987 in Arabidopsis thaliana is a tissue specific and stress inducible bidirectional promoter analyzed in transgenic Arabidopsis and Tobacco plants. PLoS One 8 (11):e79622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banerjee J, Sahoo DK, Raha S, Sarkar S, Dey N, Maiti IB (2015) A region containing an as-1 element of Dahlia Mosaic Virus (DaMV) subgenomic transcript promoter plays a key role in green tissue- and root-specific expression in plants. Plant Mol Biol Rep 33 (3):532–556

    Article  CAS  Google Scholar 

  • Baranova EN, Serenko EK, Balachnina TI, Kosobruhov AA, Kurenina LV, Gulevich AA, Maisuryan AN (2010) Activity of the photosynthetic apparatus and antioxidant enzymes in leaves of transgenic Solanum lycopersicum and Nicotiana tabacum plants, with FeSOD1 gene. Russ Agr Sci 36(4):242–249

    Article  Google Scholar 

  • Baranova YN, Akanov EN, Gulevich AA, Kurenina LV, Danilova SA, Khaliluev MR (2014) Dark respiration rate of transgenic tomato plants expressing FeSOD1 gene under chloride and sulfate salinity. Russ Agric Sci 40(1):14–17

    Article  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bartley GE, Viitanen PV, Bacot KO, Scolnik PA (1992) A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway. J Biol Chem 267:5036–5039

    PubMed  CAS  Google Scholar 

  • Bartoszewski G, Niedziela A, Szwacka M, Niemirowicz-Szczyt K (2003) Modification of tomato taste in transgenic plants carrying a thaumatin gene from Thaumatococcus daniellii benth. Plant Breed (4):347–351

    Article  CAS  Google Scholar 

  • Bassa C, Mila I, Bouzayen M, Audran-Delalande C (2012) Phenotypes associated with down-regulation of Sl-IAA27 support functional diversity among Aux/IAA family members in tomato. Plant Cell Physiol (9):1583–1595

    Article  PubMed  CAS  Google Scholar 

  • Bassolino L, Zhang Y, Schoonbeek HJ, Kiferle C, Perata P, Martin C (2013) Accumulation of anthocyanins in tomato skin extends shelf life. New Phytol (3):650–655

    Article  PubMed  CAS  Google Scholar 

  • Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966

    Article  PubMed  CAS  Google Scholar 

  • Bettini PP, Santangelo E, Baraldi R, Rapparini F, Mosconi P, Crinò P, Mauro ML (2016) Agrobacterium rhizogenes rolA gene promotes tolerance to Fusarium oxysporum f. sp. lycopersici in transgenic tomato plants (Solanum lycopersicum L.). J Plant Biochem Biotechnol 25(3):225–233

    Article  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    Article  PubMed  CAS  Google Scholar 

  • Bird CR, Smith CJS, Ray JA, Moureau P, Bevan MW, Bird AS, Hughes S, Morris PC, Grierson D, Schuch W (1988) The tomato polygalacturonase gene and ripening-specific expression in transgenic plants. Plant Mol Biol 11:651–662

    Article  PubMed  CAS  Google Scholar 

  • Bird CR, Ray JA, Fletcher JD, Boniwell JM, Bird AS, Teulieres C, Blain I, Bramley PM, Schuch W (1991) Using antisense RNA to study gene function: inhibition of carotenoid biosynthesis in transgenic tomatoes. Biotechnol 9:635–639

    CAS  Google Scholar 

  • Bovy A, de Vos R, Kemper M, Schijlen E, Almenar Pertejo M, Muir S, Collins G, Robinson S, Verhoeyen M, Hughes S, Santos-Buelga C, van Tunen A (2002) High-flavonol tomatoes resulting from heterologous expression of the maize transcription factor gene Lc and C1. Plant Cell 14:2509–2526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EGWM, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    Article  PubMed  CAS  Google Scholar 

  • Campos L, Lisón P, López-Gresa MP et al (2014) Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae. Mol Plant Microbe Interact 27(10):1159–1169

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Tang X, Giovannoni J, Xiao F, Liu Y (2012) Functional characterization of a tomato COBRA-like gene functioning in fruit development and ripening. BMC Plant Biol 12:211–225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carli P, Arima S, Fogliano V, Tardella L, Frusciante L, Ercolano MR (2009) Use of network analysis to capture key traits affecting tomato organoleptic quality. J Exp Bot 60:3379–3386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carmi N, Salts Y, Dedicova B, Shabtai S, Barg R (2003) Induction of parthenocarpy in tomato via specific expression of the rolB gene in the ovary. Planta 217:726–735

    Article  PubMed  CAS  Google Scholar 

  • Carrari F, Nunes-Nesi A, Gibon Y, Lytovchenko A, Loureiro ME, Fernie AR (2003) Reduced expression of aconitase results in an enhanced rate of photosynthesis and marked shifts in carbon partitioning in illuminated leaves of wild species tomato. Plant Physiol 133:1322–1335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen G (2004) Identification of a specific isoform of Tomato Lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiol 136(1):2641–2651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen R, Li H, Zhang L et al (2007) CaMi, a root-knot nematode resistance gene from hot pepper (Capsium annuum L.) confers nematode resistance in tomato. Plant Cell Rep 26(7):895–905

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Zou Y, Ding S, Zhang J, Yu X, Cao J, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol (5):489–499

    Article  PubMed  CAS  Google Scholar 

  • Cheng X, Liu X, Wang H et al (2015) Effect of emamectin benzoate on root-knot nematodes and tomato yield. PLoS One 10(10):e0141235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  PubMed  CAS  Google Scholar 

  • Chow S, Norris JF, Bilder B (2016) Insight into the genetically modified foods: from the concerns of safety to food development (part I). Sci Insigt. https://doi.org/10.15354/si.16.vi010

  • Clayton EE (1923) The relation of temperature to the Fusarium wilt of the tomato. American J Bot 10(2):71–88

    Article  Google Scholar 

  • Cletus J, Balasubramanian V, Vashisht D et al (2013) Transgenic expression of plant chitinases to enhance disease resistance. Biotechnol Lett 35(11):1719–1732

    Article  PubMed  CAS  Google Scholar 

  • Colliver S, Bovy A, Collins G, Muir S, Robinson S, de Vos CHR, Verhoeyen ME (2002) Improving the nutritional content of tomatoes through reprogramming their flavonoid biosynthetic pathway. Phytochem Rev 1:113–123

    Article  CAS  Google Scholar 

  • Cortina C, Culianez-Macia FA (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169:75–82

    Article  CAS  Google Scholar 

  • Cuartero J, Boları´n MC, Ası´ns MJ, Moreno V (2006) Increasing salt tolerance in the tomato. J Exp Bot 57:1045–1058

    Article  PubMed  CAS  Google Scholar 

  • D’Ambrosio C, Giorio G, Marino I, Merendino A, Petrozza A, Salfi L, Stigliani AL, Cellini F (2004) Virtually complete conversion of lycopene into b-carotene in fruits of tomato plants transformed with the tomato lycopene b-cyclase (tlcy-b) cDNA. Plant Sci 166:207–214

    Article  CAS  Google Scholar 

  • D’Ambrosio C, Stigliani AL, Giorio G (2011) Overexpression of CrtR-b2 (carotene beta hydroxylase 2) from S. lycopersicum L. differentially affects xanthophylls synthesis and accumulation in transgenic tomato plants. Transgenic Res 20:47–60

    Article  PubMed  CAS  Google Scholar 

  • Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlich J, Bramley PM, Pennings HMJ, Bowler C (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895

    Article  CAS  PubMed  Google Scholar 

  • de Jong M, Wolters-Arts M, Garcıa-Martınez JL, Mariani C, Vriezen WH (2011) The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellins signalling during tomato fruit set and development. J Exp Bot (2):617–626

    Google Scholar 

  • de Jonge R, van Esse HP, Maruthachalam K, Bolton MD, Santhanam P, Saber MK, Zhang Z, Usami T, Lievens B, Subbarao KV, Thomma BPHJ (2012) Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proc Natl Acad Sci 109(13):5110–5115

    Google Scholar 

  • de la Garza RID, Quinlivan PE, Klaus SMJ, Basset GJC, Gregory JF, Hanson AD (2004) Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. PNAS (38):13720–13725

    Google Scholar 

  • de la Garza RID, Gregory JF, Hanson AD (2007) Folate biofortification of tomato fruit. PNAS (10):4218–4222

    Google Scholar 

  • Dominguez T, Hernandez LM, Pennycooke JC, Jimenez P, Martınez-Rivas JM, Sanz C, Stockinger EJ, Sanchez-Serrano JJ, Sanmartin M (2010) Increasing v-3 desaturase expression in tomato results in altered aroma profile and enhanced resistance to cold stress. Plant Physiol 153:655–665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duan M, Feng H-L, Wang L-Y, Li D, Meng Q-W (2012) Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to chilling stress in tomato. J Plant Physiol 169(9):867–877

    Article  PubMed  CAS  Google Scholar 

  • Dutta TK, Papolu PK, Banakar P et al (2015) Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes. Front Microbiol 6:260

    PubMed  PubMed Central  Google Scholar 

  • Eisenstein M (2013) Discovery in a dry spell. Nature 501:S7–S9

    Article  PubMed  CAS  Google Scholar 

  • El-Sharkawy I, Sherif SM, Jones B, Mila I, Kumar PP, Bouzayen M, Jayasankar S (2014) TIR1-like auxin-receptors are involved in the regulation of plum fruit development. J Exp Bot 65:5205–5215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Sharkawy I, Sherif S, El-Kayal W, Jones B, Li Z, Sullivan AJ, Jayasankar S (2016) Overexpression of plum auxin receptor PslTIR1 in tomato alters plant growth, fruit development and fruit shelf-life characteristics. BMC Plant Biol 16:56–67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • FAOSTAT Website (http://faostat3.fao.org/home/E)

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  PubMed  CAS  Google Scholar 

  • Foolad MR, Zhang LP, Khan AA, Niño-Liu D, Lin GY (2002) Identification of QTLs for early blight (Alternaria solani) resistance in tomato using backcross populations of a Lycopersicon esculentum × L. hirsutum cross. Theor Appl Genet 104(6-7):945–958

    Google Scholar 

  • Fradin EF, Thomma BP (2006) Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol 7(2):71–86

    Article  PubMed  CAS  Google Scholar 

  • Fradin EF, Abd-El-Haliem A, Masini L et al (2011) Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis. Plant Physiol 156(4):2255–2265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fraser PD, Romer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. PNAS (2):1092–1109

    Article  CAS  Google Scholar 

  • Fraser PD, Enfissi EMA, Halket JM, Truesdale MR, Yu D, Gerrish C, Bramleya PM (2007) Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell 19:3194–3211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fray RG, Grierson D (1993) Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol 22:589–602

    Article  PubMed  CAS  Google Scholar 

  • Fuentes A, Ramos PL, Fiallo E, Callard D, Sa´nchez Y, Peral R, Rodrı´guez R, Pujol M (2006) Intron–hairpin RNA derived from replication associated protein C1 gene confers immunity to Tomato Yellow Leaf Curl Virus infection in transgenic tomato plants. Transgenic Res 15:291–304

    Article  PubMed  CAS  Google Scholar 

  • Galvez LC, Banerjee J, Pinar H, Mitra A (2014) Engineered plant virus resistance. Plant Sci 228:11–25

    Article  PubMed  CAS  Google Scholar 

  • Garchery C, Gest N, Do PT, Alhagdow M, Baldet P, Menard G, Rothan C, Massot C, Gautier H, Aarrouf J, Fernie AR, Stevens R (2013) A diminution in ascorbate oxidase activity affects carbon allocation and improves yield in tomato under water deficit. Plant Cell Environ 36:159–175

    Article  PubMed  CAS  Google Scholar 

  • Garcia V, Stevens R, Gil L, Gilbert L, Gest N, Petit J, Faurobert M, Maucourt M, Deborde C, Moing A, Poessel JL, Jacob D, Bouchet JP, Giraudel JL, Gouble B, Page D, Alhagdow M, Massot C, Gautier H, Lemaire-Chamley M, Rolin D, Usadel B, Lahaye M, Causse M, Baldet P, Rothan C (2009) An integrative genomics approach for deciphering the complex interactions between ascorbate metabolism and fruit growth and composition in tomato. C R Biol (11):1007–1021

    Article  PubMed  CAS  Google Scholar 

  • Gerszberg A, Hnatuszko-Konka K (2017) Tomato tolerance to abiotic stress: a review of most often engineered target sequences. Plant Growth Regul (online). https://doi.org/10.1007/s10725-017-0251-x

  • Gerszberg A, Hnatuszko-Konka K, Kowalczyk T, Kononowicz AK (2015) Tomato (Solanum lycopersicum L.) in the service of biotechnology. Plant Cell Tiss Org Cult 120:881–902

    Article  CAS  Google Scholar 

  • Gilbert L, Alhagdow M, Nunes-Nesi A, Quemener B, Guillon F, Bouchet B, Faurobert M, Gouble B, Page D, Garcia V, Peti J, Stevens R, Causse M, Fernie AR, Lahaye M, Rothan C, Baldet P (2009) GDP-D-mannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. Plant J 60:499–508

    Article  PubMed  CAS  Google Scholar 

  • Giorio G, Stigliani AL, D’Ambrosio C (2008) Over-expression of carotene b-hydroxylase 1 (CrtR-b1) and lycopene bcyclase (Lcy-b) in transgenic tomato fruits. Acta Hort (789):277–284

    Google Scholar 

  • Giovannoni JJ, DellaPenna D, Bennett AB, Fischer RL (1989) Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. Plant Cell 1:53–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giovinazzo G, D’Amico L, Paradiso A, Bollino R, Sparvoli F, DeGara L (2005) Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant Biotechnol J 3:57–69

    Article  PubMed  CAS  Google Scholar 

  • Girhepuje PV, Shinde GB (2011) Transgenic tomato plants expressing a wheat endochitinase gene demonstrate enhanced resistance to Fusarium oxysporum f. sp. lycopersici. Plant Cell Tiss Org Cult 105(2):243–251

    Article  CAS  Google Scholar 

  • Gisbert C, Rus AM, Boları´n MC, Coronado JM, Arrillaga I, Montesinos C, Caro M, Serrano R, Moreno V (2000) The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol 123:393–402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gleason ML, Edmunds BA (2005) Tomato diseases and disorders. vinesgardens.org

  • Gleason ML, Edmunds BA (2006) Tomato diseases and disorders. University Extension PM 1266, Iowa State University, Ames

    Google Scholar 

  • Goel D, Singh AK, Yadav V, Babbar SB, Bansal KC (2010) Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.). Protoplasma 245:133–141

    Article  PubMed  CAS  Google Scholar 

  • Goetz M, Hooper LC, Johnson SD, Rodrigues JC, Vivian-Smith A, Koltunov AM (2007) Expression of aberrant forms of auxin response factor 8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol 2:336–351

    Google Scholar 

  • Gonzalez-cendales Y, Catanzariti AM, Baker B, Mcgrath DJ, Jones DA (2016) Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes. Mol Plant Pathol 17(3):448–463

    Article  PubMed  CAS  Google Scholar 

  • Good X, Kellogg JA, Wagoner W, Langhoff D, Matsumura W, Bestwick RK (1994) Reduced ethylene synthesis by transgenic tomatoes expressing S-adenosylmethionine hydrolase. Plant Mol Biol 26:781–790

    Article  PubMed  CAS  Google Scholar 

  • Gould WA (2013) Tomato production, processing and technology, 3rd edn. Woodhead Publishing, Sawston, Cambridge, UK

    Google Scholar 

  • Goulet C, Mageroy MH, Lam NB, Floystad A, Tieman DM, Klee HJ (2012) Role of an esterase in flavor volatile variation within the tomato clade. PNAS 109:19009–19014

    Article  PubMed  PubMed Central  Google Scholar 

  • Grandillo S, Zamir D, Tanksley SD (1999) Genetic improvement of processing tomatoes: a 20 years perspective. Euphytica 110:85–97

    Article  Google Scholar 

  • Grierson D, Kader AA (1986) Fruit ripening and quality. In: Atherton JG, Rudich J (eds) The tomato crop: a scientific basis for improvement. Chapman and Hall, London, pp 241–280

    Chapter  Google Scholar 

  • Gul Z, Ahmed M, Khan ZU, Khan B, Iqbal M (2016) Evaluation of tomato lines against Septoria leaf spot under field conditions and its effect on fruit yield. Agric Sci 7(04):181–186

    Article  Google Scholar 

  • Hamilton AJ, Lycett GW, Grierson D (1990) Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346:284–287

    Article  CAS  Google Scholar 

  • He P, Warren RF, Zhao T et al (2001) Overexpression of Pti5 in tomato potentiates pathogen-induced defense gene expression and enhances disease resistance to Pseudomonas syringae pv. tomato. Mol Plant Microbe Interact 14(12):1453–1457

    Article  PubMed  CAS  Google Scholar 

  • Herbette S, Tourvieille de Labrouheb D, Drevet JR, Roeckel-Drevet P (2011) Transgenic tomatoes showing higher glutathione peroxidase antioxidant activity are more resistant to an abiotic stress but more susceptible to biotic stresses. Plant Sci 180:548–553

    Article  PubMed  CAS  Google Scholar 

  • Hiatt WR, Kramer M, Sheehy RE (1989) The application of antisense RNA technology to plants. Genetic engineering: principles and methods. J. K. Setlow. Boston, MA, Springer US, pp 49–63

    Chapter  Google Scholar 

  • Hightower R, Baden C, Penzes E, Lund P, Dunsmuir P (1991) Expression of antifreeze proteins in transgenic plants. Plant Mol Biol 17:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Hirai T, Kim YW, Kato K, Hiwasa-Tanase K, Ezura H (2011) Uniform accumulation of recombinant miraculin protein in transgenic tomato fruit using a fruit-ripening-specific E8 promoter. Transgenic Res 20:1285–1292

    Article  PubMed  CAS  Google Scholar 

  • Hiwasa-Tanase K, Nyarubona M, Hirai T, Kato K, Ichikawa T, Ezura H (2011) High-level accumulation of recombinant miraculin protein in transgenic tomatoes expressing a synthetic miraculin gene with optimized codon usage terminated by the native miraculin terminator. Plant Cell Rep 30:113–124

    Article  PubMed  CAS  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1- carboxylic acid. Agric Biol Chem 42:1825–1831

    CAS  Google Scholar 

  • Hontzeas N, Zoidakis J, Glick BR, Abu-Omar MM (2004) Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochim Biophys Acta 1703:11–19

    Article  PubMed  CAS  Google Scholar 

  • Horvath DM, Stall RE, Jones JB et al (2012) Transgenic resistance confers effective field level control of bacterial spot disease in tomato. PLoS One 7(8):e42036. https://doi.org/10.1371/journal.pone.0042036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hsieh TH, Li CW, Su RC, Cheng CP, Sanjaya TYC, Chan MT (2010) A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta 231:1459–1473

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Wu Q, Sprague SA, Park J, Oh M, Rajashekar CB, Koiwa H, Nakata PA, Cheng N, Hirschi KD, Frank F White FF, Park S (2015) Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components. Hort Res 2:15051

    Article  CAS  Google Scholar 

  • Ishibashi K, Masuda K, Naito S et al (2007) An inhibitor of viral RNA replication is encoded by a plant resistance gene. Proc Natl Acad Sci U S A 104(34):13833–13838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janska A, Marsik P, Zelenkova S, Ovesna J (2009) Cold stress and acclimation – what is important for metabolic adjustment? Plant Biol 12:395–405

    Article  CAS  Google Scholar 

  • Jones JB, Jones JP, Stall RE, Zitter TA (eds) (1991) Compendium of tomato diseases. The American Phytopathological Society, St. Paul, pp 31–42

    Google Scholar 

  • Jongedijk E. et al. (1995) Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. The Methodology of Plant Genetic Manipulation: Criteria for Decision Making: Proceedings of the Eucarpia Plant Genetic Manipulation Section Meeting held at Cork, Ireland from September 11 to September 14, 1994. AC Cassells and PW Jones. Dordrecht, Springer Netherlands, pp. 173–180

    Google Scholar 

  • Kadotani N, Nakayashiki H, Tosa Y, Mayama S (2003) RNA Silencing in the Phytopathogenic fungus Magnaporthe oryzae. Mol Plant Microbe Interact 16(9):769–776

    Article  PubMed  CAS  Google Scholar 

  • Kadyrzhanova DK, Vlachonasios KE, Ververidis P, Dilley DR (1998) Molecular cloning of a novel heat induced/chilling tolerance related cDNA1 in tomato fruit by use of mRNA differential display. Plant Mol Biol 36:885–895

    Article  PubMed  CAS  Google Scholar 

  • Kang BC, Yeam I, Li H et al (2007) Ectopic expression of a recessive resistance gene generates dominant potyvirus resistance in plants. Plant Biotechnol J 5(4):526–536

    Article  PubMed  CAS  Google Scholar 

  • Kim YW, Hirai T, Kato K, Hiwasa-Tanase K, Ezura H (2010) Gene dosage and genetic background affect miraculin accumulation in transgenic tomato fruits. Plant Biotechnol 27:333–338

    Article  CAS  Google Scholar 

  • Klee HJ (1993) Ripening physiology of fruit from transgenic tomato (Lycopersicon esculentum)plants with reduced ethylene synthesis. Plant Physiol 102:911–916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187–1193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koc NK, Kayim M, Yetisir H et al (2007) The improvement of resistance to bacterial speck in transgenic tomato plants by Agrobacterium tumefaciens mediated transformation. Russian J Plant Physiol 54(1):89–96

    Article  CAS  Google Scholar 

  • Kong K, Ntui VO, Makabe S et al (2014) Transgenic tobacco and tomato plants expressing Wasabi defensin genes driven by root-specific LjNRT2 and AtNRT2.1 promoters confer resistance against Fusarium oxysporum. Plant Biotechnol 31:89–96

    Article  CAS  Google Scholar 

  • Kostov K, Christova P, Slavov S et al (2009) Constitutive expression of a radish defensin gene Rs-AFP2 in tomato increases the resistance to fungal pathogens. Biotechnol Biotechnol Equip 23(1):1121–1125

    Article  CAS  Google Scholar 

  • Kouki S, Saidi N, Rajeb AB et al (2012) Control of Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. radicis-lycopersici using mixture of vegetable and Posidonia oceanica compost. Appl Environ Soil Sci 239639:1–11. https://doi.org/10.1155/2012/239639

    Article  CAS  Google Scholar 

  • Kunik T, Salomon R, Zamir D, Navot N, Zeidan M, Michelson I, Gafni Y, Czosnek H (1994) Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus. Nat Biotechnol 12:500–504

    Article  CAS  Google Scholar 

  • Lanfermeijer FC, Dijkhuis J, Sturre MJG et al (2003) Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-22 from Lycopersicon esculentum. Plant Mol Biol 52(5):1039–1051

    Article  Google Scholar 

  • Le Gall G, DuPont MS, Mellon FA, Davis AL, Collins GJ, Verhoeyen ME, Colquhoun IJ (2003) Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J Agric Food Chem 51:2438–2446

    Article  PubMed  CAS  Google Scholar 

  • Li X, Gasic K, Cammue B et al (2003) Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218(2):226–232

    Article  PubMed  CAS  Google Scholar 

  • Li XQ, Wei JZ, Tan A et al (2007) Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnol J 5(4):455–464

    Article  PubMed  CAS  Google Scholar 

  • Li F, Xinga S, Guoa Q, Zhaoa M, Zhanga J, Gaoa Q, Wangb G, Wanga W (2011) Drought tolerance through over-expression of the expansin gene TaEXPB23 intransgenic tobacco. J Plant Physiol 168:960–966

    Article  PubMed  CAS  Google Scholar 

  • Li S, Jin X, Chen J et al (2013) Inhibitory activities of venom alkaloids of Red Imported Fire Ant against Clavibacter michiganensis subsp. michiganensis in vitro and the application of piperidine alkaloids to manage symptom development of bacterial canker on tomato in the greenhouse. Int J Pest Manage 59(2):150–156

    Article  CAS  Google Scholar 

  • Lin WC, Lu CF, Wu JW et al (2004) Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res 13(6):567–581

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Cong B, Tanksley SD (2003) Generation and analysis of an artificial gene dosage series in tomato to study the mechanism by which the cloned quantitative trait locus fw2.2 controls fruit size. Plant Physiol (1):292–299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Yang JH, Li B, Yang XM, Meng QW (2010) Antisense expression of tomato chloroplast omega-3 fatty acid desaturase gene (LeFAD7) enhances the tomato high-temperature tolerance through reductions of trienoic fatty acids and alterations of physiological parameters. Photosyntheyhica (1):59–66

    Google Scholar 

  • Liu XY, Teng YB, Meng QW (2013) Enhancement of low-temperature tolerance in transgenic tomato plants overexpressing Lefad7 through regulation of trienoic fatty acids. Photosyntheyhica (2):238–244

    Article  CAS  Google Scholar 

  • Louws FJ, Wilson M, Cuppels DA et al (2001) Field control of bacterial spot of tomato and pepper and bacterial speck of tomato using a plant activator. Plant Dis 85:481–488

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Feng H, Meng X, Li D, Yang D, Wu C, Meng Q (2014) Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC Plant Biol 14:351–364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  PubMed  CAS  Google Scholar 

  • Mahesh U, Mamidala P, Rapolu S, Aragao FJL, Souza MT, Rao PJM, Kirti PB, Nanna RS (2013) Constitutive overexpression of small HSP24.4 gene in transgenic tomato conferring tolerance to high-temperature stress. Mol Breed 32:687–697

    Article  CAS  Google Scholar 

  • Maligeppagol M, Chandra GS, Prakash M, Navale PM, Deepa H, Rajeev PR, Asokan R, Babu KP, Babu CCB, Rao VK, Kumar KNK (2013) Anthocyanin enrichment of tomato (Solanum lycopersicum L.) fruit by metabolic engineering. Curr Sci 1:72–80

    Google Scholar 

  • Marco F, Bitrián M, Carrasco P, Rajam MV, Alcázar R, Tiburcio AF (2015) In: Bahadur B et al. (eds) Plant biology and biotechnology: Volume II: Plant genomics and biotechnology, Springer India, New Delhi, pp 579–609

    Chapter  Google Scholar 

  • Martin G, Brommonschenkel S, Chunwongse J, Frary A, Ganal M, Spivey R, Wu T, Earle E, Tanksley S (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262 (5138):1432–1436

    Article  PubMed  CAS  Google Scholar 

  • Meli VS, Ghosh S, Prabha TN, Chakraborty N, Chakraborty S, Datta A (2010) Enhancement of fruit shelf life by suppressing N-glycan processing enzymes. PNAS 107:2413–2418

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng X, Wang JR, Wang GD, Liang XQ, Li XD, Meng QW (2015) An R2R3-MYB gene, LeAN2, positively regulated the thermotolerance in transgenic tomato. J Plant Physiol 175:1–8

    Article  CAS  PubMed  Google Scholar 

  • Mes PJ, Boches P, Myers JR, Durst R (2008) Characterization of tomatoes expressing anthocyanin in the fruit. J Amer Soc Hort Sci 133:262–269

    Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J et al (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10(8):1307–1319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mintz-Oron S, Mandel T, Rogachev I, Feldberg L, Lotan O, Yativ M, Wang Z, Jetter R, Venger I, Adato A, Aharoni A (2008) Gene expression and metabolism in tomato fruit surface tissues. Plant Physiol 147:823–851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16:1555–1567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moens M, Perry RN, Starr JL (2009) Meloidogyne spp.-a diverse group of novel and important plant parasite. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CAB International, Wallingford, Oxfordshire, pp 1–17

    Google Scholar 

  • Moghaieb REA, Tanaka N, Saneoka H, Hussein HA, Yousef SS, Ewada MAF, Aly MAM, Fujita K (2000) Expression of betaine aldehyde dehydrogenase gene in transgenic tomato hairy roots leads to the accumulation of glycine betaine and contributes to the maintenance of the osmotic potencial under salt stress. Soil Sci Plant Nutr 46:873–883

    Article  CAS  Google Scholar 

  • Morgan MJ, Osorio S, Gehl B, Baxter CJ, Kruger NJ, Ratcliffe RG, Fernie AR, Sweetlove LJ (2013) Metabolic engineering of tomato fruit organic acid content guided by biochemical analysis of an introgression line. Plant Physiol (1):397–407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muir SR, Collins GJ, Robinson S, Hughes SG, Bovy AG, de Vos CH, van Tunen AJ, Verhoyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol (5):470–474

    Article  PubMed  CAS  Google Scholar 

  • Murray AJ, Hobson GE, Schuch W, Bird CR (1993) Reduced ethylene synthesis in EFE antisense tomatoes has differential effects on fruit ripening processes. Post harvest Biol Technol 2:301–313

    Article  CAS  Google Scholar 

  • Mustafiz A, Sahoo KK, Singla-Pareek SL, Sopory SK (2010) Metabolic engineering of glyoxalase pathway for enhancing stress tolerance in plants. In: Ramanjulu S (ed) Plant stress tolerance, volume 639 of the series methods mol biol, pp 95–118

    Google Scholar 

  • Nascimento FX, Rossi MJ, Soares CRFS, McConkey BJ, Glick BR (2014) New Insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS One 9:e99168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nautiyal PC, Shono M, Egawa Y (2005) Enhanced thermotolerance of the vegetative part of MT-sHSP transgenic tomato line. Sci Hortic 105:393–409

    Article  Google Scholar 

  • Neily MH, Matsukura C, Maucourt M, Bernillon S, Deborde C, Moing A, Yin YG, Saito T, Mori K, Asamizua E, Rolin D, Moriguchi T, Ezura H (2011) Enhanced polyamine accumulation alters carotenoid metabolism at the transcriptional level in tomato fruit over-expressing spermidine synthase. J Plant Physiol 168:242–252

    Article  PubMed  CAS  Google Scholar 

  • Nelson RS, McCormick SM, Delannay X, Dubé P, Layton J, Anderson EJ, Kaniewska M, Proksch RK, Horsch RB, Rogers SG, Fraley RT, Beachy RN (1988) Virus tolerance, plant performance of transgenic tomato plants expressing coat protein from tobacco mosaic virus. Nat Biotechnol 6:403–409

    Article  Google Scholar 

  • Nowicki M, Kozik EU, Foolad MR (2013) Late blight of tomato. In: Varshney RK, Tuberosa R (eds) Translational genomics for crop breeding. John Wiley & Sons Ltd., USA, pp 241–265

    Chapter  Google Scholar 

  • Orellana S, Yanez M, Espinoza A, Verdugo I, Gonzales E, Ruiz-Lara S, Cacaretto JA (2010) The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant Cell Environ 33:2191–2208

    Article  PubMed  CAS  Google Scholar 

  • Orzaez D, Medina A, Torre S, Fernandez-Moreno JP, Rambla JL, Fernandez-del-Carmen A, Butelli E, Martin C, Granell A (2009) A visual reporter system for virus-induced gene silencing in tomato fruit based on anthocyanin accumulation. Plant Physiol (3):1122–1134

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouyang B, Chen YH, Li HX et al (2005) Transformation of tomatoes with osmotin and chitinase genes and their resistance to Fusarium wilt. J Hortic Sci Biotech 80(5):517–522

    Article  CAS  Google Scholar 

  • Panthee DR, Chen F (2010) Genomics of fungal disease resistance in tomato. Curr Genomics 11(1):30–39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patade VY, Khatri D, Kumari M, Grover A, Gupta SM, Ahmed Z (2013) Cold tolerance in osmotin transgenic tomato (Solanum lycopersicum L.) is associated with modulation in transcript abundance of stress responsive genes. SpringerPlus 2:117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patel TK, Krasnyanski SF, Allen GC et al (2015) Progeny of selfed plants from tomato breeding line ‘NC1 grape’ overexpressing mannitol dehydrogenase (MTD) have increased resistance to the early blight fungus, Alternaria solani. Plant Health Progress. https://doi.org/10.1094/PHP-RS-15-0022

  • Peñarrubia L, Aguilar M, Margossian L, Fischer RL (1992a) An antisense gene stimulates ethylene hormone production during tomato fruit ripening. Plant Cell 4:681–687

    Article  PubMed  PubMed Central  Google Scholar 

  • Peñarrubia L, Kim R, Giovannoni J, Kim SH Fischer RL (1992b) Production of the sweet protein monellin in transgenic plants. Nat Biotechnol 10:561–564

    Article  Google Scholar 

  • Peng J-C, Chen T-C, Raja JAJ et al. (2014) Broad-spectrum transgenic resistance against distinct tospovirus species at the genus level. PLoS One 9(5):e96073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phan TD, Bo W, West G, Lycett GW, Tucker GA (2007) Silencing of the major salt-dependent isoform of pectinesterase in tomato alters fruit softening. Plant Physiol 144:1960–1967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Picton S, Barton SL, Bouzayen M, Hamilton AJ, Grierson D (1993) Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. Plant J 3:469–481

    Article  CAS  Google Scholar 

  • Pineda B (2005) Ana´lisis functional de diversos genes relacionados con la tolerancia a la salinidad y el estre´s hı´drico en plantas transge´nicas de tomate (Lycopersicon esculentum Mill). PhD thesis, Universidad Polite´cnica de Valencia

    Google Scholar 

  • Pineda B, Garcia-Abellan JO, Perez F, Moyano E, Garcia Sogo B, Campos JF, Angosto T, Morales B, Capel J, Moreno V, Lozano R, Bolarin MC, Atares A (2012) Tomato: genomic approaches for salt and drought stress tolerance. In: Tuteja N, Gill SS, Tiburcio A, Tuteja R (eds) Improving crop resistance to abiotic stress, Vol 1 & Vol 2. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Chapter  Google Scholar 

  • Powell ALT, Kalamaki MS, Kurien PA, Gurrieri S, Bennett AB (2003) Simultaneous transgenic suppression of LePG and LeExp1influences fruit texture and juice viscosity in a fresh market tomato variety. J Agric Food Chem 51:7450–7455

    Article  PubMed  CAS  Google Scholar 

  • Poysa V, Tu JC (1993) Response of cultivars and breeding lines of Lycopersicon spp. to Septoria lycopersici. Canadian Plant Dis Survey 73:9–13

    Google Scholar 

  • Prins M, de Haan P, Luyten R et al (1995) Broad resistance to tospoviruses in transgenic tobacco plants expressing three tospoviral nucleoprotein gene sequences. Mol Plant Microbe Interact 8:85–91

    Article  PubMed  CAS  Google Scholar 

  • Radhajeyalakshmi R, Velazhahan R, Balasubramanian P et al. (2005) Overexpression of thaumatin-like protein in transgenic tomato plants confers enhanced resistance to Alternaria solani. Arch Phytopathol Plant Protect 38(4):257–265

    Article  CAS  Google Scholar 

  • Reddy CS, Vjayalakshmi M, Kaul T, Islam T, Reddy MK (2015) Improving flavour and quality of tomatoes by expression of synthetic gene encoding sweet protein monellin. Mol Biotechnol 57:448–453

    Article  PubMed  CAS  Google Scholar 

  • Reyes MI, Nash TE, Dallas MM et al (2013) Peptide aptamers that bind to geminivirus replication proteins confer a resistance phenotype to tomato yellow leaf curl virus and tomato mottle virus infection in tomato. J Virol 87(17):9691–9706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ribeiro SG, Lohuis H, Goldbach R et al (2007) Tomato chlorotic mottle virus is a target of RNA silencing but the presence of specific short interfering RNAs does not guarantee resistance in transgenic plants. J Virol 81(4):1563–1573

    Article  PubMed  CAS  Google Scholar 

  • Robison MM, Shah S, Tamot B et al (2001) Reduced symptoms of Verticillium wilt in transgenic tomato expressing a bacterial ACC deaminase. Mol Plant Pathol 2(3):135–145

    Article  PubMed  CAS  Google Scholar 

  • Rotino G, Acciarri N, Sabatini E, Mennella G, Scalzo RL, Maestrelli A, Molesini B, Pandolfini T, Scalzo J, Mezzetti B, Spena A (2005) Open field trial of genetically modified parthenocarpic tomato: seedlessness and fruit quality. BMC Biotechnol 5(1):32

    Google Scholar 

  • Roy-Barman S, Sautter C, Chattoo BB (2006) Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses. Transgenic Res 15(4):435–446

    Article  PubMed  CAS  Google Scholar 

  • Rus AM, Estan˜ MT, Gisbert C, Garcia-Sogo B, Serrano R, Caro M, Moreno V, MC B´n (2001) Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na+ selectivity under salt stress. Plant Cell Environ 24:875–880

    Article  CAS  Google Scholar 

  • Sabehat A, Weiss D, Lurie S (1996) The correlation between heat shock protein accumulation and persistence and chilling in tomato fruit. Plant Physiol 110:531–537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sade N, Gebretsadik M, Seligmann R, Schwartz A, Wallach R, Moshelion M (2010) The role of tobacco aquaporin1 in improving water use efficiency, hydraulic conductivity, and yield production under salt stress. Plant Physiol 152:245–254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarrion-Perdigones A, Falconi EE, Zandalinas SI, Juárez P, Fernández-del-Carmen A, Granell A, Orzaez D (2011) GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 6:e21622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaefer SC, Gasic K, Cammue B (2005) Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense genes. Planta 222:858–866

    Article  PubMed  CAS  Google Scholar 

  • Schijlen E, de Vos CHR, Jonker H, van den Broeck H, Molthoff J, van Tunen A, Martens S, Bovy A (2006) Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnol J 4:433–444

    Article  PubMed  CAS  Google Scholar 

  • Schijlen EGWM, de Vos CHR, Martens S, Jonker HH, Rosin FM, Molthoff JF, Tikunov YM, Angenent GC, van Tunen AJ, Bovy AG (2007) RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol 144:1520–1530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schreiber G, Reuveni M, Evenor D, Oren-Shamir M, Ovadia R, Sapir-Mir M, Bootbool-Man A, Nahon S, Shlomo H, Chen L, Levin I (2012) ANTHOCYANIN1 from Solanum chilense is more efficient in accumulating anthocyanin metabolites than its Solanum lycopersicum counterpart in association with the ANTHOCYANIN FRUIT phenotype of tomato. Theor Appl Genet 124:295–307

    Article  PubMed  CAS  Google Scholar 

  • Schuch W, Kanczler J, Robertson D, Hobson G, Tucker G, Grierson D, Bright S, Bird C (1991) Fruit quality characteristics of transgenic tomato fruit with altered polygalacturonase activity. Hort Sci 26:1517–1520

    CAS  Google Scholar 

  • Schumann GL, D’Arcy CJ (2000) Late blight of potato and tomato. The Plant Health Instructor. https://doi.org/10.1094/PHI-I-2000-0724-01

  • Seebold K (2008) Bacterial canker of tomato. Plant pathology fact sheet. Cooperative Extension Service. University of Kentucky, Agricultural and Natural Resources

    Google Scholar 

  • Sen Y, van der Wolf J, Visser RG et al (2015) Bacterial canker of tomato: current knowledge of detection, management, resistance, and interactions. Plant Dis 99:4–13

    Article  PubMed  Google Scholar 

  • Seong ES, Cho HS, Choi D, Joung YH, Lim CK, Hur JH, Wang MH (2007) Tomato plants overexpressing CaKR1 enhanced tolerance to salt and oxidative stress. Biochem Biophys Res Commun 363:983–988

    Article  PubMed  CAS  Google Scholar 

  • Sheehy RE, Kramer M, Hiatt WR (1988) Reduction of polygalacturonase activity in tomato fruit by antisense RNA. PNAS 85:8805–8809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin S, Mackintosh CA, Lewis J et al (2008) Transgenic wheat expressing a barley class II chitinase gene has enhanced resistance against Fusarium graminearum. J Exp Bot 59(9):2371–2378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sieso V, Nicolas M, Seck S, Crouzet J (1976) Constituants volatils de la tomate: mise en evidence et formation par voie enzymatique du trans-hexene-2-ol. Agric Biol Chem 40:2349–2353

    Article  CAS  Google Scholar 

  • Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ (2004) The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles b-ionone, pseudoionone, and geranylacetone. Plant J 40:882–892

    Article  PubMed  CAS  Google Scholar 

  • Small DM, Voss J, Mak YE, Simmons KB, Parrish T, Gitelman D (2004) Experience-dependent neural integration of taste and smell in the human brain. J Neurophysiol 92:1892–1903

    Article  PubMed  Google Scholar 

  • Smart R, Blum M, Wesseler J (2016) Trends in approval times for genetically engineered crops in the United States and the European Union. J Agric Econ. https://doi.org/10.1111/1477-9552.12171

  • Smith CJ, Watson CF, Morris PC, Bird CR, Seymour GB, Gray JE, Arnold C, Tucker GA, Schuch W, Harding S, Griersonr D (1990) Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes. Plant Mol Biol 14:369–379

    Article  PubMed  CAS  Google Scholar 

  • Smith DL, Abbott JA, Gross KC (2002) Down-regulation of tomato β-galactosidase 4 results in decreased fruit softening. Plant Physiol 129:1755–1762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Speirs J, Lee E, Holt K, Yong-Duk K, Scott NS, Loveys B, Schuch W (1998) Genetic manipulation of alcohol dehydrogenase levels in ripening tomato fruit affects the balance of some flavor aldehydes and alcohols. Plant Physiol 117:1047–1058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun HJ, Kataoka H, Yano M, Ezura H (2007) Genetically stable expression of functional miraculin, a new type of alternative sweetener, in transgenic tomato plants. Plant Biotechnol J 5:768–777

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Yuan B, Zhang M, Wang L, Cui M, Wang Q, Leng P (2012a) Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit. J Exp Bot 63:3097–3108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun L, Sun Y, Zhang M, Wang L, Ren J, Cui M, Wang Y, Ji K, Li P, Li Q, Chen P, Dai S, Duan C, Wu Y, Ping Leng P (2012b) Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato. Plant Physiol 158:283–298

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun K, Wolters AM, Loonen AE et al (2016) Down-regulation of Arabidopsis DND1 orthologs in potato and tomato leads to broad-spectrum resistance to late blight and powdery mildew. Transgenic Res 25:123–138

    Article  PubMed  CAS  Google Scholar 

  • Swarup V (2012) Vegetable Science and Technology. Kalyani Publishers, B/I/1292, Rajendra Nagar, Ludhiana-141008, India

    Google Scholar 

  • Tabaeizadeh Z, Agharbaoui Z, Harrak H et al (1999) Transgenic tomato plants expressing a Lycopersicon chilense chitinase gene demonstrate improved resistance to Verticillium dahliae race 2. Plant Cell Rep 19(2):197–202

    Article  CAS  PubMed  Google Scholar 

  • Tai TH, Dahlbeck D, Clark ET et al (1999) Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci U S A 96(24):14153–14158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang X, Xie M, Kim YJ et al (1999) Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell 11(1):15–29

    PubMed  PubMed Central  CAS  Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  CAS  Google Scholar 

  • Theocharis A, Clément C, Barka E (2012) Physiological and molecular changes in plants grown at low temperatures. Planta 235:1091–1105

    Article  PubMed  CAS  Google Scholar 

  • Thomzik JE, Stenzel K, Stöcker R, Schreier PH, Hain R, Stahl DJ (1997) Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol Mol Plant Pathol 51(4):265–278

    Article  CAS  Google Scholar 

  • Tieman D, Bliss P, McIntyre LM, Blandon-Ubeda A, Bies D, Odabasi AZ, GR R´g, van der Knaap E, Taylor MG, Goulet C, Mageroy MH, Snyder DJ, Colquhoun T, Moskowitz H, Clark DG, Sims C, Bartoshuk L, Klee HJ (2012) The chemical interactions underlying tomato flavor preferences. Curr Biol 22:1035–1039

    Article  PubMed  CAS  Google Scholar 

  • Tiwari M, Sharma D, Trivedi PK (2014) Artificial microRNA mediated gene silencing in plants: progress and perspectives. Plant Mol Biol 86(1-2):1–18

    Article  PubMed  CAS  Google Scholar 

  • Tsuda T, Horio F, Uchida K, Aoki H, Osawa T (2003) Dietary cyanidin 3-O-β-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J Nutr 133:2125–2130

    Article  PubMed  CAS  Google Scholar 

  • Tyler BM et al (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261–1266

    Article  PubMed  CAS  Google Scholar 

  • Ultzen T, Gielen J, Venema F, Westerbroek A, de Haan P, Tan M-L, Schram A, van Grinsven M, Goldbach R (1995) Resistance to tomato spotted wilt virus in transgenic tomato hybrids. Euphytica 85 (1-3):159–168

    Article  CAS  Google Scholar 

  • van der Vossen E, Sikkema A, Bt H et al (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882

    Article  PubMed  CAS  Google Scholar 

  • Verhoeyen ME, Bovy A, Collins G, Muir S, Robinson S, de Vos CHR, Colliver S (2002) Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J Exp Bot 53:2099–2106

    Article  PubMed  CAS  Google Scholar 

  • Waller JC, Akhtar TA, Lara-Nunez A, Gregory JF, McQuinn RP, Giovannoni JJ, Hanson AD (2010) Developmental and feedforward control of the expression of folate biosynthesis genes in tomato fruit. Mol Plant (1):66–77

    Article  PubMed  CAS  Google Scholar 

  • Wang LS, Stoner GD (2008) Anthocyanins and their role in cancer prevention. Cancer Lett 269:281–290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang C, Chin CK, Gianfagna T (2000) Relationship between cutin monomers and tomato resistance to powdery mildew infection. Physiol Mol Plant Pathol 57(2):55–61

    Article  CAS  Google Scholar 

  • Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech JC, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell (10):2676–2692

    Article  CAS  Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Cui M, Fuchigami L (2006) Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV-B and heat stress. J App Hort 8:87–90

    Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Uratsu SL, Cui M, Dandekar A, Fuchigami L (2007) Ectopic expression of Mn-SOD in Lycopersicon esculentum leads to enhanced tolerance to salt and oxidative tress. J App Hort 9:3–8

    Google Scholar 

  • Wang BQ, Zhang QF, Liu JH, Li GH (2011) Overexpression of PtADC confers enhanced dehydratation and drought tolerance in transgenic tobacco and tomato: effect on ROS elimination. Biochem Biophys Res Commn 413:10–16

    Article  CAS  Google Scholar 

  • Wang HS, Yu C, Tang XF, Zhu ZJ, Ma NN, Meng QW (2014) A tomato endoplasmic reticulum (ER)-type omega-3 fatty acid desaturase (LeFAD3) functions in early seedling tolerance to salinity stress. Plant Cell Rep 33:131–142

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Seymour GB, Fray R, Foster T (Unpublished) Modulation of Tomato Fruit Texture by Silencing Cell Wall Structure-Related Genes Divisions of Plant and Crop and Food Science, University of Nottingham, Loughborough LE12 5RD

    Google Scholar 

  • Whitham S, Mccormick S, Baker B (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci U S A 93:8776–8781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wittmann J, Brancato C, Berendzen KW et al (2016) Development of a tomato plant resistant to Clavibacter michiganensis using the endolysin gene of bacteriophage CMP1 as a transgene. Plant Pathol 65:496–502

    Article  CAS  Google Scholar 

  • Xu Q, Xu X, Shi Y, Xu J, Huang B (2014) Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress. PLoS One. https://doi.org/10.1371/journal.pone.0100792

  • Yanez M, Caseres S, Orellana S, Bastias A, Verdugo I, Luiz-Lara S, Casaretto JA (2009) An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes. Plant Cell Rep (10):1497–1507

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Sherwood TA, Patte CP, Hiebert E, Polston JE (2004) Use of tomato yellow leaf curl virus Rep gene sequences to engineer TYLCV resistance in tomato. Phytopathol 94:490–496

    Google Scholar 

  • Yang L, Shen H, Pan A, Chen J, Huang C, Zhang D (2005) Screening and construct-specific detection methods of transgenic Huafan No 1 tomato by conventional and real-time PCR. J Sci Food Agric 85:2159–2166

    Article  CAS  Google Scholar 

  • Yang MQ, Taylor J, Elnitski L (2008) Comparative analyses of bidirectional promoters in vertebrates. BMC Bioinformatics 28:1471–2105

    Google Scholar 

  • Yu C, Wang H-S, Yang S, Tang X-F, Duan M, Meng Q-W (2009) Overexpression of endoplasmic reticulum omega-3 fatty acid desaturase gene improves chilling tolerance in tomato. Plant Physiol Biochem 47(11-12):1102–1112

    Article  PubMed  CAS  Google Scholar 

  • Zanor MI, Osorio S, Nunes-Nesi A, Carrari F, Lohse M, Usadel B, Kuhn C, Bleiss W, Giavalisco P, Willmitzer L, Sulpice R, Zhou YH, Fernie AR (2009) RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol (3):1204–1218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Shi J, Wang Y, Xue SJ (2008) Cultivar and agricultural management on lycopene and vitamin C contents in tomato fruits. In: Preedy VR, Watson RR (eds) Tomatoes and tomato products. Science Publishers, Enfield, pp 27–45

    Chapter  Google Scholar 

  • Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Li H, Ye Z (2011) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30:389–398

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Butelli E, Stefano RD, Schoonbeek H, Magusin A, Pagliarani C, Wellner N, Hill L, Orzaez D, Granell A, Jones JDG, Martin C (2013) Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold. Curr Biol 23:1094–1100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng Z, Nonomura T, Appiano M et al. (2013) Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica. PLoS One 8(7):e70723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng Z, Appiano M, Pavan S et al. (2016) Genome-wide study of the tomato SlMLO gene family and its functional characterization in response to the powdery mildew fungus Oidium neolycopersici. Front Plant Sci 7:380

    Google Scholar 

  • Zhu M, Chen G, Zhou S, Tu Y, Wang Y, Dong T, Hu Z (2014) A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol 55:119–135

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, J., Gantait, S., Sarkar, S., Bhattacharyya, P.K. (2018). Transgenic Research on Tomato: Problems, Strategies, and Achievements. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-90650-8_12

Download citation

Publish with us

Policies and ethics