Skip to main content

Mutation Breeding in Ornamentals

  • Chapter
  • First Online:
Ornamental Crops

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 11))

Abstract

Induced mutation technique is a valuable tool that has been exploited for ornamental breeding for the past 30 years. Mutation breeding has been more successful in ornamental plants because changes in phenotypic characteristics like flower color, shape and size, chlorophyll variegation in leaves, and growth habit can be easily detected. In addition, the heterozygous nature of many ornamental plants offers high mutation frequency. Since mutations are induced in single cells, irradiation of multicellular structures with chemical and physical mutagens will appear as chimeras. However, the use of in vitro culture using adventitious bud techniques has proven to be the most efficient method to avoid chimerism. Mutation by using X-rays and gamma rays has successfully produced a large number of new varieties in different ornamental plants which had been commercialized. Appropriate strategies in mutation induction such as the use of in vitro culture technique in combination with chronic gamma irradiation have proven to be an effective method of mutation induction to produce new promising mutant varieties of ornamentals over a short period of time. During the past two decades, ion beam radiation has emerged as an effective and unique mutagen for improvement in ornamental plants since it produces higher mutation frequencies compared to X-rays and gamma rays. Currently, interest in research has shifted toward the application of molecular breeding and genetic engineering for ornamental improvement, but both have their own advantages and disadvantages. Mutation breeding is still an attractive method for creating genetic variability and has become a routine technique in many vegetatively propagated ornamental plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T, Matsuyama T, Sekido S, Yamaguchi I, Yoshida S, Kameya T (2002) Chlorophyll-deficient mutants of rice demonstrated the deletion of a DNA fragment by heavy-ion irradiation. J Radiat Res 43(Suppl):S157–S161

    Article  PubMed  CAS  Google Scholar 

  • Affrida AH, Sakinah A, Zaiton A, Mohd Nazir B, Tanaka A, Narumi I, Oono Y, Hase Y (2008) Mutation induction in orchids using ion beams. JAEA Takasaki Annu Rep 2007:61

    Google Scholar 

  • Ahloowalia BS (1998) In-vitro techniques and mutagenesis for the improvement of vegetatively propagated plants. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer Academic Publishers, Dordrecht, pp 293–309

    Chapter  Google Scholar 

  • Ahloowalia BS, Maluszynski M (2001) Induced mutations – a new paradigm in plant breeding. Euphytica 118:167–173

    Article  CAS  Google Scholar 

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135(2):187–204

    Article  Google Scholar 

  • Arisumi T, Frazier LC (1968) Cytological and morphological evidence for the single-cell origin of vegetatively propagated shoots in thirteen species of Saintpaulia treated with colchicines. Proc Am Soc Hortic Sci 93:679–685

    Google Scholar 

  • Banerji BK, Datta SK, Sharma SC (1994) Gamma irradiation studies on gladiolus cv. White Friendship. J Nucl Agric Biol 23(3):127–133

    Google Scholar 

  • Blakely EA (1992) Cell inactivation by heavy charged particles. Radiat Environ Biophys 31:181–196

    Article  PubMed  CAS  Google Scholar 

  • Bottino PJ, Sparrow AH, Schwemmer SS, Thompson KH (1975) Interrelation of exposure and exposure rate in germinating seeds of barley and its concurrence with dose-rate theory. Radiat Bot 15:17–27

    Article  Google Scholar 

  • Broertjes C (1966) Mutation breeding of chrysanthemums. Euphytica 15(2):156–162

    Article  CAS  Google Scholar 

  • Broertjes C (1968a) Mutation breeding of vegetatively propagated crops. In: 5th Congress of the European Association for Research on Plant Breeding, 30.9-2.10, Milano, pp 139–165

    Google Scholar 

  • Broertjes C (1968b) Dose-rate effects in Saintpaulia. In: Mutations in plant breeding II. Proceedings of a panel, Vienna, 11–15 September 1967, Jointly organized by the IAEA and FAO, IAEA Vienna, pp 63–71

    Google Scholar 

  • Broertjes C, Van Harten AM (1978) Application of mutation breeding methods in the improvement in vegetatively propagated crops. Elsevier Scientific Publishing Company, Amsterdam., 353pp

    Google Scholar 

  • Broertjes C, Keen A (1980) Adventitious shoots: do they develop from one cell? Euphytica 29:73–87

    Article  Google Scholar 

  • Broertjes C, Van Harten AM (1988) Applied mutation breeding for vegetatively propagated crops. Elsevier Scientific Publishing Co, Amsterdam. 345pp

    Google Scholar 

  • Broertjes C, Verboom H (1974) Mutation breeding of Alstroemeria. Euphytica 23:39–44

    Article  Google Scholar 

  • Broertjes C, Haccius B, Weidlich S (1968) Adventitious bud formation on isolated leaves and its significance for mutation breeding. Euphytica 22:415–423

    Google Scholar 

  • Broertjes C, Roest S, Bokelmann GS (1976) Mutation breeding of Chrysanthemum morifolium Ramat. using in vivo and in vitro adventitious bud techniques. Euphytica 25:11–19

    Article  Google Scholar 

  • Broetrjes C, Koene P, Van Veen JWH (1980) A mutant of a mutant of a mutant of a...: Irradiation of progressive radiation-induced mutants in a mutation-breeding programme with Chrysanthemum morifolium Ramat. Euphytica 29:525–530

    Article  Google Scholar 

  • Cassels AC, Walsh PC (1993) Diplontic selection as a positive factor in determining the fitness of mutants of Dianthus ‘Mystere’ derived from X-irradiation of nodes in in vitro culture. Euphytica 70:167–174

    Article  Google Scholar 

  • Chakrabarty D, Mandal AKA, Datta SK (1999) Management of chimera through direct shoot regeneration from florets of chrysanthemum (Chrysanthemum morifolium Ramat.). J Hortic Sci Biotechnol 74:293–296

    Article  Google Scholar 

  • Chatterjee J, Mandal AKA, Ranade SA, Teixeira da Silva JA, Datta SK (2006) Molecular systematics in Chrysanthemum x grandiflorum (Ramat.) Kitamura. Sci Hortic 110:373–378

    Article  CAS  Google Scholar 

  • Chinone S, Tokuhiro K, Nakatsubo K, Hase Y, Narumi I (2008) Mutation induction on Delphinium and Limonium sinuatum irradiated with ion beams. JAEA Takasaki Annu Rep 2007:68

    Google Scholar 

  • Constantin MJ (1984) Potential of in vitro mutation breeding for the improvement of vegetatively propagated crop plants, pp 59–77. International Atomic Energy Agency, Vienna, Austria. Induced mutations for crop improvement in Latin America, Vienna, Austria

    Google Scholar 

  • Dao TB, Nguyen PD, Do QM, Vu TH, Le TL, Nguyen TKL, Nguyen HD, Nguyen XL (2006) In vitro mutagenesis of chrysanthemum for breeding. Plant Mutat Rpt 1:26–27

    Google Scholar 

  • Das PK, Ghosh P, Dube S, Dhua SP (1974) Induction of somatic mutations in some vegetatively propagated ornamentals by gamma radiation. Technology (Coimbatore, India) 11(2&3):185–188

    Google Scholar 

  • Datta SK (1988) Chrysanthemum varieties evolved by induced mutations at Botanical Research Institute, Lucknow. Chrysanthemum 44(1):72–75

    Google Scholar 

  • Datta SK (1992) Mutation studies on double bracted Bougainvillea at National Botanical Research Institute (NBRI), Lucknow, India. Mutat Breed Newsl 39(January):8–9

    Google Scholar 

  • Datta SK (2006) Parameters for detecting effects of ionizing radiations on plants. In: Tripathi RD, Kulshreshtha K, Agrawal M, Ahmad KJ, Varshney CK, Krupa SV, Pushpangadan P (eds) Plant responses to environmental stress. International Book Distributing Cp, Lucknow, pp 257–265

    Google Scholar 

  • Datta SK (2009a) A report on 36 years of practical work on crop improvement through in induced mutagenesis. In: Shu QY (ed) Induced plant mutations in the genomic era. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, pp 253–256

    Google Scholar 

  • Datta SK (2009b) Role of classical mutagenesis for development of new ornamental varieties. In: Shu QY (ed) Induced plant mutations in the genomics era. Proceedings of an international joint FAO/IAEA symposium. International Atomic Energy Agency, Vienna, Austria, pp 300–2

    Google Scholar 

  • Datta SK, Banerji BK (1990) “Los Banos Variegata” – new double bracted chlorophyll variegated bougainvillea induced by gamma rays. J Nucl Agric Biol 19(2):134–136

    Google Scholar 

  • Datta SK, Banerji BK (1994) ‘Mahara variegata’ – a new mutant of bougainvillea. J Nucl Agric Biol 23(2):114–116

    Google Scholar 

  • Datta SK, Chakrabarty D, Mandal AKA (2001) Gamma ray induced genetic variation and their manipulation through tissue culture. Plant Breed 120:91–92

    Article  CAS  Google Scholar 

  • Datta SK, Misra P, Mandal AKA (2005) In vitro mutagenesis – a quick method for establishment of solid mutant in chrysanthemum. Curr Sci 88(1):155–158

    CAS  Google Scholar 

  • Doorenbos J (1973) Breeding ‘Elatior’ begonia (Begonia x hiemalis Fotsch). Acta Hortic 31:127–131

    Article  Google Scholar 

  • Doorenbos J, Karper JJ (1975) X-ray induced mutations in Begonia x Hiemalis. Euphytica 24(1):13–19

    Article  Google Scholar 

  • Dowrick GJ, Bayoumi AE (1966) The induction of mutations in chrysanthemum using X- and gamma radiation. Euphytica 15:204–210

    Article  CAS  Google Scholar 

  • Dube S, Das PK, Dev AK, Bid NN (1980) Varietal improvement of Dahlia by gamma irradiation. Indian J Hortic 37(1):82–87

    Google Scholar 

  • Fang JY (2011) In vitro mutation induction of Saintpaulia using ethyl methane sulfonate. Hortscience 46(7):981–984

    Google Scholar 

  • FAO/IAEA (1977) Manual on mutation breeding second edition. Technical reports series No. 119. International Atomic Energy Agency, Vienna, 288pp

    Google Scholar 

  • FAO/IAEA (2011) Mutation induction for breeding. International Atomic Energy Agency, Vienna. URL: http://mvgs.iaea.org/LaboratoryProtocols.aspx. Accessed 10 May 2011

  • FAO/IAEA (2017) FAO/IAEA mutant variety database of the joint FAO/IAEA division of nuclear techniques in food and agriculture. Available online: http://mvd.iaea.org/. Accessed March 2017

  • Fujii T, Ikenaga M, Lyman JT (1966) Radiation effects on Arabidopsis thaliana. II. Killing and mutagenic efficiencies of heavy ionizing particles. Radiat Bot 6:297–306

    Article  Google Scholar 

  • Goodhead DT (1995) Molecular and cell models of biological effects of heavy ion radiation. Radiat Environ Biophys 34:67–72

    Article  PubMed  CAS  Google Scholar 

  • Gupta MN (1979) Improvement of some ornamental plants by induced somatic mutations at National Botanical Research Institute. In: Proceedings of symposium on the role of induced mutations in crop improvement, Sept. 10–13, Department of Genetics, Osmania University, Hyderabad, pp 75–92

    Google Scholar 

  • Gupta MN, Nath P (1977) Mutation breeding in bougainvillea II. Further experiments with varieties ‘Partha’ and ‘President Rosevilles Delight’. J Nucl Agric Biol 6:122–124

    Google Scholar 

  • Hamatani M, Iitsuka Y, Abe T, Miyoshi K, Yamamot M, Yoshida S (2001) Mutant flowers of dahlia (Dahlia pinnata Cav.) induced by heavy-ion beams. RIKEN Accel Prog Rep 34:169

    Google Scholar 

  • Hara Y, Abe T, Sakamoto K, Miyazawa Y, Yoshida S (2003) Effects of heavy-ion beam irradiation in rose (Rosa Hybrid cv. ‘Bridal Fantasy’). RIKEN Accel Prog Rep 36:135

    Google Scholar 

  • Hase Y, Yamaguchi M, Inoue M, Tanaka A (2002) Reduction of survival and induction of chromosome aberrations in tobacco irradiated by carbon ions with different LETs. Int J Radiat Biol 78:789–806

    Article  CAS  Google Scholar 

  • Heinze B, Schmidt J (1995) Mutation work with somatic embryogenesis in woody plants. In: Jain SM, Gupta K, Newton J (eds) Somatic embryogenesis in woody plants, vol 1. Kluwer Academic Publishers, Dordrecht, pp 379–IAEA 1970398

    Google Scholar 

  • Hirono Y, Smith HH, Lyman JT, Thompson KH, Baum JW (1970) Relative biological effectiveness of heavy ions in producing mutations, tumors and growth inhibition in the crucifer plant, Arabidopsis. Radiat Res 44:204–223

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim R, Mondelaers W, Debergh PC (1998) Effects of X-irradiation on adventitious buds regeneration from in vitro leaf explants of Rosa hybrid. Plant Cell Tissue Organ Cult 54:37–44

    Article  Google Scholar 

  • Iizuka M, Yoshihara R, Hase Y (2008) Development of commercial variety of Osteospermum by a stepwise mutagenesis by ion beam irradiation. JAEA Takasaki Annu Rep 2007:65

    Google Scholar 

  • Jacobs M (2005) Comparaison de l’action mutagen d’agents alkylants et des radiations gamma chez Arabidopsis thaliana. Radiat Bot 9:251–268

    Article  Google Scholar 

  • Jain SM (2006) Mutation-assisted breeding for improving ornamental plants. In: Proceedings of the 22nd international Eucarpia symposium section ornamentals: breeding for beauty. Issue 714, pp 85–98

    Google Scholar 

  • Jain SM (2010) Mutagenesis in crop improvement under the climate change. Rom Biotechnol Lett 15(2):88–106

    Google Scholar 

  • Jain SM, Spencer MM (2006) Biotechnology and mutagenesis in improving ornamental plants. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: AdVances and topical issues, vol 1. Global Science Books, Ilseworth, UK, pp 589–600

    Google Scholar 

  • Jerzy M, Zalewska M (1996) Polish varieties of Dendranthema grandiflora Tzvelev and Gerbera jamesonii Bolus bred in vitro by induced mutations. Mutat Breed Newsl 42:19

    Google Scholar 

  • Kanaya T, Saito H, Hayashi Y, Fukunishi N, Ryuto H, Miyazaki K, Kusumi T, Abe T, Suzuki K (2008) Heavy-ion beam-induced sterile mutants of verbena (Verbena hybrida) with an improved flowering habit. Plant Biotechnol 25:91–96

    Article  Google Scholar 

  • Kaul A, Kumar S, Thakur M, Ghani M (2011) Gamma ray induced in-vitro mutations in flower colour in Dendranthema grandiflora Tzelev. Floricult Ornament Bio-Technol 5:71–73

    Google Scholar 

  • Kharkwal MC, Shu QY (2009) The role of induced mutations in world food security. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 33–38

    Google Scholar 

  • Killion DD, Constantin MJ (1971) Acute gamma irradiation of the wheat plant: effects of exposure, exposure rate, and developmental stage on survival, height, and grain yield. Radiat Bot 11:367–373

    Article  Google Scholar 

  • Killion DD, Constantin MJ, Siemer EG (1971) Acute gamma irradiation of the soybean plant: effects of exposure, exposure rate and developmental stage on growth and yield. Radiat Bot 11:225–232

    Article  Google Scholar 

  • Kumar G, Yadav RS (2010) Induced intergenomic chromosomal rearrangements in Sesamum indicum L. Cytologia 75(2):157–162

    Article  Google Scholar 

  • Kumar S, Prasad KV, Choudhary ML (2006) Detection of genetic variability among chrysanthemum radiomutants using RAPD markers. Curr Sci 90:1108–1113

    CAS  Google Scholar 

  • Lagoda PJL (2009) Networking and fostering cooperation in plant genetics and breeding. Role of the joint FAO/IAEA division. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 27–30

    Google Scholar 

  • Lai YP, Huang J, Li J, Wu ZR (2004) A new approach to random mutagenesis in vitro. Biotechnol Bioeng 86(6):622–627

    Article  PubMed  CAS  Google Scholar 

  • Lamseejan S, Jompuk P, Wongpiyasatid A, Deeseepan S, Kwanthammachart P (2000) Gamma-rays induced morphological changes in chrysanthemum (Chrysanthemum morifolium). Kasetsart J (Nat Sci) 34:417–422

    Google Scholar 

  • Lamseejan S, Jompuk P, Deeseepan S (2003) Improvement of chrysanthemum var. ‘Taihei’ through in vitro induced mutation with chronic and acute gamma rays. J Nucl Soc Thail 2003(4):2–13

    Google Scholar 

  • Laneri U, Franconi R, Altavista P (1990) Somatic mutagenesis of Gerbera jamesonii hybrid: irradiation and in vitro culture. Acta Hortic 28:395–402

    Article  Google Scholar 

  • Lett JT (1992) Damage to cellular DNA from particulate radiations, the efficacy of its processing and the radiosesitivity of mammalian cells. Radiat Environ Biophys 31:257–277

    Article  PubMed  CAS  Google Scholar 

  • Liew OW, Ching P, Chong J, Li B, Asundi AK (2008) Signature optical cues: emerging technologies for monitoring plant health. Sensors 8:3205–3239

    Article  PubMed  CAS  Google Scholar 

  • Magori S, Tanaka A, Kawaguchi M (2010) Physical induced mutations: ion beam mutagenesis. In: Kahl G, Meksem K (eds) The handbook of plant mutation screening. Wiley-VCH Verlag GmbH & Co, Weinheim

    Google Scholar 

  • Maluszynski M, Ahloowalia BS, Sigurbjörnsson B (1995) Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica 85:303–315

    Article  Google Scholar 

  • Maluszynski M, Nichterlein K, Zanten V, Ahloowalia BS (2000) Officially released mutant varieties – the FAO/IAEA database. Mutat Breed Rev 12:1–84

    Google Scholar 

  • Mandal AKA, Chakrabarty D, Datta SK (2000a) Application of in vitro technique in mutation breeding of chrysanthemum. Plant Cell Tissue Organ Cult 60:33–38

    Article  Google Scholar 

  • Mandal AKA, Chakrabarty D, Datta SK (2000b) In vitro isolation of solid novel flower colour mutants from induced chimeric ray florets of chrysanthemum. Euphytica 114:9–12

    Article  Google Scholar 

  • Matsubara H, Suda H, Sawada Y, Nouchi I (1975) An-ozone-sensitive strain from the mutants induced by gamma ray irradiation of the Begonia rex, variety Winter Queen. Agric Hortic 50(6):811–812

    Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000a) Targeted screening for induced mutations. Nat Biotechnol 18(4):455–457

    Article  PubMed  CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000b) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123(2):439–442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Medina FIS, Amano E, Tano S. (2004) FNCA mutation breeding manual. Forum for Nuclear Cooperation in Asia. URL: http://www.fnca.mext.go.jp/english/mb/mbm/e_mbm.html. Accessed 10 May 2011

  • Mei M, Deng H, Lu Y, Zhuang C, Liu Z, Qiu Q, Qiu Y, Yang TC (1994) Mutagenic effects of heavy ion radiation in plants. Adv Space Res 14:363–372

    Article  PubMed  CAS  Google Scholar 

  • Micke A, Donini B, Maluszynski N (1990) Induced mutations for crop improvement. In: Mutation breeding review (FAO/IAEA), no. 7, Vienna (Austria), IAEA, p 41

    Google Scholar 

  • Mikkeksen JC, Ryan J, Constantin MJ (1975) Mutation breeding of Rieger’s Elatior begonias. Am Hortic 54(3):18–21

    Google Scholar 

  • Minano HS, Gonzalez-Benino ME, Martic C (2009) Molecular characterization and analysis of somaclonal variation in chrysanthemum varieties using RAPD markers. Sci Hortic 122:238–243

    Article  CAS  Google Scholar 

  • Misra P, Datta SK, Chakbarty D (2004) Mutation in flower colour and shape of Chrysanthemum morifolium induced by gamma irradiation. Biol Plant 47:153–156

    Article  Google Scholar 

  • Miyazaki K, Suzuki K, Abe T, Katsumoto Y, Yoshida S, Kusumi T (2002) Isolation of variegated mutants of Petunia hybrid using heavy-ion beam irradiation. RIKEN Accel Prog Rep 35:130

    Google Scholar 

  • Miyazaki K, Suzuki K, Iwaki K, Kusumi T, Abe T, Yoshida S, Fukui H (2006) Flower pigment mutations induced by heavy ion beam irradiation in an interspecific hybrid of Torenia. Plant Biotechnol 23:163–167

    Article  CAS  Google Scholar 

  • Morita R, Kusaba M, Iida S, Yamaguchi H, Nishio T, Nishimura M (2009) Molecular characterization of mutations induced by gamma irradiation in rice. Genes Genet Syst 84:361–370

    Article  PubMed  CAS  Google Scholar 

  • Nagatomi S (2003) Development of flower mutation breeding through ion beam irradiation. Res J Food Agric 26:33–38

    Google Scholar 

  • Nagatomi S, Degi K (2009) Mutation breeding of Chrysanthemum by gamma field irradiation and in vitro culture. In: Shu QY (ed) Induced plant mutations in genomic era. Food and Agriculture Organization of the United Nations, Rome, pp 258–261

    Google Scholar 

  • Nagatomi S, Degi K, Yagaguchi M, Miyahira E, Skamoto M, Takaesu K (1993) Six mutant varieties of different flower colour induced by floral organ culture of chronically irradiated chrysanthemum plants. Tech News-Inst Radiat Breed 43:1–2

    Google Scholar 

  • Nagatomi S, Miyahira E, Degi K (1996a) Combined effect of gamma irradiation methods and in vitro explants sources on mutation induction of flower colour. Gamma field symposia No. 35, Institute of Radiation Breeding, NIAR, MAFF, Japan

    Google Scholar 

  • Nagatomi S, Miyahira E, Degi K (1996b) Induction of flower mutation comparing with chronic and acute gamma irradiation using tissue culture technique in Chrysanthemum morifolium. Ramat. Acta Hortic 508:69–73

    Google Scholar 

  • Nagatomi S, Tanaka A, Kato A, Watanabe H, Tano S (1996c) Mutation induction of chrysanthemum plants regenerated from in vitro cultured explants irradiated with C ion beam. TIARA Annu Rep 5:50–52

    Google Scholar 

  • Nagatomi S, Tanaka A, Tano S, Watanabe H (1997) Chrysanthemum mutants regenerated from in vitro explants irradiated with 12C5+ ion beam. Technical News of Institute of Radiation Breeding, No. 60

    Google Scholar 

  • Nagatomi S, Tanaka A, Watanabe H, Tano S (1998) Enlargement of potential chimera on Chrysanthemum mutants regenerated from 12C5+ ion beam irradiated explants. JAERI-Rev 97-015:48–50

    Google Scholar 

  • Nagatomi S, Miyahira E, Degi K (2000) Combined effect of gamma irradiation methods in vitro explant sources on mutation induction of flower colour in Chrysanthemum morifolium Ramat. Gamma field symposia, No. 35, 1996 Institute of Radiation Breeding, NIAR, MAFF, Japan

    Google Scholar 

  • Nagatomi S, Watanabe H, Tanaka A, Yamaguchi H, Degi K, Morishita T (2003) Six mutant varieties induced by ion beams in chrysanthemum. Institute of Radiation Breeding Technical News 65

    Google Scholar 

  • Nagayoshi S (2003) Radiation breeding in Kagoshima prefecture – breeding of ‘chrysanthemum with a few axillary flower buds’ by ion beams. Radiat Ind 98:10–16

    Google Scholar 

  • Okamura M, Yasuno N, Ohtsuka K, Tanaka A, Shikazono N, Hase Y (2003) Wide variety of flower-colour and –shape mutants regenerated from leaf cultures irradiated with ion beams. Nucl Instrum Methods Phys Res B206:574–578

    Article  CAS  Google Scholar 

  • Okamura M, Tanaka A, Momose M, Umemoto N, Teixeira da Silva JA, Toguri T (2006) Advances of mutagenesis in flowers and their industrialization. In: da Silva JAT (d). Floriculture, ornamental and plant biotechnology Vol. I. Global Science Books, Isleworth, 619–628

    Google Scholar 

  • Pathirana R (2011) Plant mutation breeding in agriculture. Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, CAB 6, No. 032

    Google Scholar 

  • Predieri S, Zimmerman RH (2001) Pear mutagenesis: in vitro treatment with gamma-rays and field selection for productivity and fruit traits. Euphytica 3:217–227

    Article  Google Scholar 

  • Rego LV, Faria RT (2001) Tissue culture in ornamental plant breeding review. Crop Breed Appl Biotechnol 1:285–300

    Article  Google Scholar 

  • Rodrigo RL, Alvis HA, Neto TA (2004) In vitro mutation of chrysanthemum (Dendranthema grandiflora Tzvelev) with ethyl methane sulphonate (EMS) in immature floral pedicels. Plant Cell Tissue Organ Cult 77:103–106

    Article  Google Scholar 

  • Sasaki K, Aida R, Niki T, Yamaguchi H, Narumi T, Nishijima T, Hayashi Y, Ryuto H, Fukunishi N, Abe T, Ohtsubo N (2008) High-efficiency improvement of transgenic torenia flowers by ion beam irradiation. Plant Biotechnol 25:81–89

    Article  CAS  Google Scholar 

  • Schaart JG, Van de Wiel CCM, Lotz LAP, Smulders MJM (2016) Opportunities for products of new plant breeding techniques. Trends Plant Sci 21:438–448. https://doi.org/10.1016/j.tplants.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  • Schum AR (2003) Mutation breeding in ornamentals: and efficient breeding method. Acta Hortic 612:47–60

    Article  Google Scholar 

  • Schum A, Preil W (1998) Induced mutations in ornamental plants. In: Jain SM, Brar S, Ahloowli BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer Academic Publishers, Dordrecht, pp 333–366

    Chapter  Google Scholar 

  • Shibata M, Kishimoto S, Hirai M, Aida R, Ikeda I (1998) Analysis of the periclinal chimeric structure of chrysanthemum sports by random amplified polymorphic DNA. Acta Hortic 454:347–353

    Article  CAS  Google Scholar 

  • Shikazono N, Tanaka A, Kitayama S, Watanabe H, Tano S (2002) LET dependence of lethality in Arabidopsis thaliana irradiated by heavy ions. Radiat Environ Biophys 41:159–162

    Article  PubMed  CAS  Google Scholar 

  • Shikazono N, Yokota Y, Kitamura S, Suzuki C, Watanabe H, Tano S, Tanaka A (2003) Mutation rate and novel tt mutants of Arabidopsis thaliana induced by carbon ions. Genetics 163:1449–1455

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shu QY (2009) Turning plant mutation breeding into a new era: molecular mutation breeding. In: Shu QY (ed) Induced plant mutations in the genomic era. Food and Agriculture Organization of the United Nations, Rome, pp 425–427

    Google Scholar 

  • Simard MH, Michaux-Ferriera N, Silvy A (1992) Variations of carnation (Dianthus caryophllus L.) obtained by organogenesis from irradiated petals. Plant Cell Tissue Organ Cult 29:37–42

    Article  Google Scholar 

  • Sparrow AH, Sparrow RC, Schairer LA (1960) The use of x-rays to induce somatic mutations in Saintpaulia. Afr Violet Mag 13:32–37

    Google Scholar 

  • Sparrow AH, Rogers AF, Susan SS (1968) Radiosensitivity studies with woody plants. I. Acute gamma irradiation survival data for 28 species and prediction for 190 species. Radiat Bot 8:149–186

    Article  Google Scholar 

  • Sripichtt P, Nawata E, Shigenaga S (1988) The effects of exposure dose and dose rate of gamma radiation on in vitro shoot-forming capacity of cotyledon explants in red pepper. Jpn J Breed 38:27–34

    Article  Google Scholar 

  • Srivastava R, Datta SK, Sharma SC, Roy RK (2002) Gamma rays induced genetic variability in Bougainvillea. J Nucl Agric Biol 31(1):28–36

    Google Scholar 

  • Sugiyama M, Hayashi Y, Fukunishi N, Ryuto H, Terakawa T, Abe T (2008a) Development of flower colour mutant of Dianthus chinensis var. semperflorens by heavy-ion beam irradiation. RIKEN Accel Prog Rep 41:229

    Google Scholar 

  • Sugiyama M, Saito H, Ichida H, Hayashi Y, Ryuto H, Fukunishi N, Terakawa T, Abe T (2008b) Biological effects of heavy-ion beam irradiation on cyclamen. Plant Biotechnol 25:101–104

    Article  Google Scholar 

  • Suprasanna P, Nakagawa H (2012) Mutation breeding of vegetatively propagated crops. In: Shu QY, Forster B, Nakagawa H (eds) Plant mutation breeding and biotechnology. Joint FAO/IAEA Programme, Nuclear Techniques in Food and Agriculture, CABI, Wallingford, UK, pp 347–369

    Google Scholar 

  • Suprasanna P, Jain SM, Ochatt SJ, Kulkarni VM, Predieri S (2012) Applications of in vitro techniques in mutation breeding of vegetatively propagated crop. In: Shu QY, Forster B, Nakagawa H (eds) Plant mutation breeding and biotechnology. Joint FAO/IAEA Programme, Nuclear Techniques in Food and Agriculture, CABI, Wallingford, UK, pp 371–385

    Google Scholar 

  • Tanaka A (1999) Mutation induction by ion beams in Arabidopsis. Gamma Field Symp 38:19–27

    Google Scholar 

  • Tanaka A (2009) Establishment of ion beam technology for breeding. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 216–219

    Google Scholar 

  • Tanaka A, Tano S, Chantes T, Yokota Y, Shikazano N, Watanabe H (1997) A new Arabidopsis mutant induced by ion beams affect flavonoid synthesis with spotted pigmentation in testa. Genes Genet Syst 72:141–148

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Shikazono N, Hase Y (2010) Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J Radiat Res 51:223–233

    Article  PubMed  CAS  Google Scholar 

  • Teixeira da Silva JA (2004) Ornamental chrysanthemum: improvement by biotechnology. Plant Cell Tissue Organ Cult 79:1–8

    Article  Google Scholar 

  • Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S et al (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ueno K, Nagayoshi S, Hase Y, Shikazono N, Tanaka A. 2003. Effects of ion beam irradiation on the mutation induction from chrysanthemum leaf disc culture. TIARA Annu Rep 2002. JAERI-Rev 2003-033: 52–54

    Google Scholar 

  • Ueno K, Nagayoshi S, Hase Y, Shikazono N, Tanaka A (2004) Additional improvement of chrysanthemum using ion beam re-irradiation. TIARA Annu Rep 2003. JAERI Rev 2004-025: 53–55

    Google Scholar 

  • Ueno K, Shirao T, Nagayoshi S, Hase Y, Tanaka A (2005) Additional improvement of Chrysanthemum using ion beam re-irradiation. TIARA Annu Rep 2004:60

    Google Scholar 

  • Van Harten AM (1998) Mutation breeding: theory and practical applications. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Velmurugan M, Rajamani P, Paramaguru R, Gnanam JR, Bapu K, Harisudan C, Hemalatha P (2010) In vitro mutation in horticultural crops. Agric Rev 31(1):63–67

    Google Scholar 

  • Ward JF (1994) The complexity of DNA damage: relevance to biological consequences. Int J Radiat Biol 66:427–432

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Toyota T, Emoto K, Yoshimatsu S, Hase Y, Kamisoyama S (2008) Mutation breeding of a new chrysanthemum variety by irradiation of ion beams to ‘Jinba’. JAEA Takasaki Annu Rep 2007:81

    Google Scholar 

  • Wi SG, Chung BY, Kim JH, Baek MH, Yang DH, Lee JW, Kim JS (2005) Ultrastructure changes of cell organelles in Arabidopsis stem after gamma irradiation. J Plant Biol 48(2):195–200

    Article  Google Scholar 

  • Wolf K (1996) RAPD analysis of sporting and chimerism in chrysanthemum. Euphytica 89:159–164

    Article  Google Scholar 

  • Yamaguchi H (2013) Characteristics of ion beams as mutagens for mutation breeding in rice and chrysanthemums. JARC 47(4):339–346. http://www.jircas.affrc.go.jp

    Google Scholar 

  • Yamaguchi H, Nagatomi S, Morishita T, Degi K, Tanaka A, Shikazono N, Hase S (2003) Mutation induced with ion beam irradiation in rose. Nucl Instrum Methods Phys Res B206:561–564

    Article  CAS  Google Scholar 

  • Yamaguchi H, Shimizu A, Degi K, Morishita T (2008) Effects of dose and dose rate of gamma ray irradiation on mutation induction and nuclear DNA content in chrysanthemum. Breed Sci 58:331–335

    Article  Google Scholar 

  • Yamaguchi H, Shimizu A, Hase Y, Tanaka A, Shikazono N, Degi K, Morishita T (2010) Effect of ion beam irradiation on mutation induction and nuclear DNA content in chrysanthemum. Breed Sci 60:398–404

    Article  Google Scholar 

  • Yang TC, Tobias CA (1979) Potential use of heavy-ion radiation in crop improvement. Gamma Field Symp 18:141–154

    CAS  Google Scholar 

  • Zaiton A, Affrida AH, Shakinah S, Nurul Hidayah M, Nozawa S, Narumi I, Hase Y, Oono Y (2014) Development of new Chrysanthemum morifolium Pink mutants through ion beam irradiation. JAEA Rev 2014-050:108

    Google Scholar 

  • Zalewska M, Jerzy M (1997) Mutation spectrum in Dendranthema grandiflora Tzvelev after in vivo and in vitro regeneration of plants from irradiated leaves. Acta Hortic 447:615–618

    Article  Google Scholar 

  • Zalewska M, Lema-Ruminska J, Miller N (2007) In vitro propagation using adventitious buds technique as a source of new variability in chrysanthemum. Sci Hortic 113:70–73

    Article  CAS  Google Scholar 

  • Zalewska M. Miler N, Tymoszuk A, Drzewiecka B, Winiecki J (2010) Results of mutation breeding activity on Chrysanthemum × grandiflorum (Ramat.) Kitam. In Poland, EJPAU 13(4), 27. Available Online: http://www.ejpau.media.pl/volume13/issue4/art-27.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ibrahim, R., Ahmad, Z., Salleh, S., Hassan, A.A., Ariffin, S. (2018). Mutation Breeding in Ornamentals. In: Van Huylenbroeck, J. (eds) Ornamental Crops. Handbook of Plant Breeding, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-90698-0_8

Download citation

Publish with us

Policies and ethics