Skip to main content

Numerical Study on Biological Tissue Freezing Using Dual Phase Lag Bio-Heat Equation

  • Chapter
  • First Online:
Trends in Biomathematics: Modeling, Optimization and Computational Problems

Abstract

The most widely used Fourier’s law of heat conduction leads to an unphysical infinite heat propagation speed within the medium, which is clearly in contradiction with the theory of relativity, further CV (Cattaneo and Vernotte) constitutive relation does not describe the microstructural interactions. In present study, dual phase lag model of bio-heat equation is proposed to study the freezing process in biological tissue using temperature dependent enthalpy formulation. Finite difference method is used to solve the mathematical model. Temperature profiles and interface position in tissue are obtained. It is observed that the phase-lag of the heat flux, the phase-lag of the temperature gradient and blood perfusion have significant effect on the transient temperature and phase change interfaces positions. Comparison of DPL model with parabolic and hyperbolic model of heat transport is also made in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.C. Bischof, J. Bastack, B. Rubinsky, ASME J. Biomech. Eng. 114, 467 (1992)

    Article  Google Scholar 

  2. K.J. Chua, S.K. Chou, J.C. Ho, J. Biomech. 40, 100 (2007)

    Article  Google Scholar 

  3. H.H. Pennes, J. Appl. Physiol. 1, 93 (1948)

    Article  Google Scholar 

  4. M.M. Chen, K.R. Holmes, Ann. N. Y. Acad. Sci. 335, 137 (1980)

    Article  Google Scholar 

  5. L.M. Jiji, S. Weinbaum, D.E. Lemons, ASME J. Biomech. Eng. 106, 331 (1984)

    Article  Google Scholar 

  6. S. Weinbaum, L.M. Jiji, D.E. Lemons, ASME J. Biomech. Eng. 106, 321 (1984)

    Article  Google Scholar 

  7. S. Weinbaum, L.M. Jiji, ASME J. Biomech. Eng. 107, 131 (1985)

    Article  Google Scholar 

  8. L. Wang, J. Fan, ASME J. Heat Transfer 133, 011010-1 (2011)

    Article  Google Scholar 

  9. C. Cattaneo, C. R. Acad. Sci. 247, 431 (1958)

    Google Scholar 

  10. P. Vernotte, C. R. Acad. Sci. 246, 3154 (1958)

    Google Scholar 

  11. S. Singh, S. Kumar, Math. Model. Anal. 20(4), 443 (2015)

    Article  MathSciNet  Google Scholar 

  12. S. Singh, S. Kumar, J. Mech. Med. Biol. 16(2), 1650017 (2016)

    Article  Google Scholar 

  13. D.Y. Tzou, ASME J. Heat Transfer 117, 8 (1995)

    Article  Google Scholar 

  14. D.Y. Tzou, Macro-to Microscale Heat Transfer: The Lagging Behavior (Taylor and Francis, Washington, 1997)

    Google Scholar 

  15. L.Q. Wang, Int. J. Heat Mass Transfer 37, 2627 (1994)

    Article  Google Scholar 

  16. D.Y. Tzou, M.N. Ozisik, R.J. Chiffelle, J. Heat Transfer 116, 1034 (1994)

    Article  Google Scholar 

  17. M.N. Ozisik, D.Y. Tzou, ASME J. Heat Transfer 116, 526 (1994)

    Article  Google Scholar 

  18. K.C. Liu, H. Chen, Int. J. Heat Mass Transfer 52, 1185 (2009)

    Article  Google Scholar 

  19. K.C. Liu, H. Chen, Int. J. Therm. Sci. 49, 1138 (2010)

    Article  Google Scholar 

  20. E. Majchrzak, Comput. Model. Eng. Sci. 69(1), 43 (2010)

    MathSciNet  Google Scholar 

  21. E. Majchrzak, T. Lukasz, in 19th International Conference on Computer Methods in Mechanics CMM (2011), p. 337

    Google Scholar 

  22. N. Afrin , N. Y. Zhang , J. K. Chen, Int. J. Heat Mass Transfer 54, 2419 (2011)

    Article  Google Scholar 

  23. Y. Zhang, Int. J. Heat Mass Transfer 52, 4829 (2009)

    Article  Google Scholar 

  24. J. Zhou, J.K. Chen, Y. Zhang, Comput. Biol. Med. 39, 286 (2009)

    Article  Google Scholar 

  25. J. Zhou, Y. Zhang, J.K. Chen, Int. J. Therm. Sci. 48, 1477 (2009)

    Article  Google Scholar 

  26. S. Singh, S. Kumar, Int. J. Therm. Sci. 86, 12 (2014)

    Article  Google Scholar 

  27. J. Crank, Free and Moving Boundary Problems (University Press, New York, 1984)

    MATH  Google Scholar 

  28. Z.S. Deng, J. Liu, Numer. Heat Transfer Part A 46, 487 (2004)

    Article  Google Scholar 

  29. Z.S. Deng, J. Liu, Eng. Anal. Bound. Elem. 28(2), 97 (2004)

    Article  Google Scholar 

  30. Y. Rabin, A. Shitzer, J. Biomech. Eng. 120(1), 32 (1998)

    Article  Google Scholar 

  31. S. Kumar, V.K. Katiyar, Int. J. Appl. Math. Mech. 3(3), 1 (2007)

    Google Scholar 

  32. R.I. Andrushkiw, Math. Comput. Model. 13, 1 (1990)

    Article  Google Scholar 

  33. M. Zerroukat, C.R. Chatwin, Computational Moving Boundary Problem (Wiley, New York, 1993)

    MATH  Google Scholar 

  34. J.C. Rewcastle, G.A. Sandison, K. Muldrew, J.C. Saliken, B.J. Donnelly, Med. Phys. 28, 1125 (2001)

    Article  Google Scholar 

  35. S. Kumar, V.K. Katiyar, Int. J. Appl. Mech. 2(3), 617 (2010)

    Article  Google Scholar 

  36. G. Comini, D.S. Giudice, ASME J. Heat Transfer 98, 543 (1976)

    Article  Google Scholar 

  37. A. Weill, A. Shitzer, P.B. Yoseph, J. Biomech. Eng. 115, 374 (1993)

    Article  Google Scholar 

  38. J.Y. Zhang, G.A. Sadison, J.Y. Murthy, L.X. Xu, J. Biomech. Eng. 127, 279 (2005)

    Article  Google Scholar 

  39. C. Bonacina, G. Comini, Int. J. Heat Mass Transfer 16, 1825 (1973)

    Article  Google Scholar 

  40. N.E. Hoffmann, J.C. Bischof, ASME J. Biomech. Eng. 123, 301 (2001)

    Article  Google Scholar 

  41. Y. Rabin, A. Shitzer, J. Heat Transfer 117, 425 (1995)

    Article  Google Scholar 

  42. Y. Rabin, A. Shitzer, ASME J. Heat Biomech. Eng. 119, 146 (1997)

    Article  Google Scholar 

  43. Z.S. Deng, J. Liu, J. Therm. Stresses 26, 779 (2003)

    Article  Google Scholar 

  44. A. Moradi, H. Ahamdikia, J. Eng. Med. 226(5), 406 (2012)

    Article  Google Scholar 

  45. H. Ahamdikia, A. Moradi, R. Fazlali, B. Parsa, J. Mech. Sci. Technol. 26(6), 1937 (2012)

    Article  Google Scholar 

  46. L. Jing, C. Xu, L.X. Xu, IEEE Trans. Biomed. Eng. 46(4), 420 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The authors Sushil Kumar and Sonalika Singh are thankful to S. V. National Institute of Technology, Surat, India for providing CPDA grant and Senior Research Fellowship, (SRF) respectively, for the research work presented in this manuscript. Sushil Kumar thanks to the International Union of Biological Sciences (IUBS) for partial support of living expenses in Moscow, during the 17th BIOMAT International Symposium, October 29-November 04, 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Singh, S. (2018). Numerical Study on Biological Tissue Freezing Using Dual Phase Lag Bio-Heat Equation. In: Mondaini, R. (eds) Trends in Biomathematics: Modeling, Optimization and Computational Problems. Springer, Cham. https://doi.org/10.1007/978-3-319-91092-5_19

Download citation

Publish with us

Policies and ethics