Skip to main content

Generating Effective Euler Diagrams

  • Conference paper
  • First Online:
Diagrammatic Representation and Inference (Diagrams 2018)

Abstract

Euler diagrams are used for visualizing categorized data, with applications including crime control, bioinformatics, classification systems and education. Various properties of Euler diagrams have been empirically shown to aid, or hinder, their comprehension by users. Therefore, a key goal is to automatically generate Euler diagrams that possess beneficial layout features whilst avoiding those that are a hindrance. The automated layout techniques that currently exist sometimes produce diagrams with undesirable features. In this paper we present a novel approach, called iCurves, for generating Euler diagrams alongside a prototype implementation. We evaluate iCurves against existing techniques based on the aforementioned layout properties. This evaluation suggests that, particularly when the number of zones is high, iCurves can outperform other automated techniques in terms of effectiveness for users, as indicated by the layout properties of the produced Euler diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A zone is a maximal region of the plane inside a subset of the curves and outside the remaining curves.

  2. 2.

    Two abstract zones are neighbours if their symmetric difference has one element.

References

  1. Alper, B., Henry Riche, N., Ramos, G., Czerwinski, M.: Design study of LineSets, a novel set visualization technique. IEEE Trans. Vis. Comput. Graph. 17(12), 2259–2267 (2011)

    Article  Google Scholar 

  2. Alsallakh, B., Micallef, L., Aigner, W., Hauser, H., Miksch, S., Rodgers, P.: Visualizing sets and set-typed data: state-of-the-art and future challenges. In: Eurographics Conference on Visualization STAR, pp. 1–21. Wiley, Hoboken (2014)

    Google Scholar 

  3. Blake, A., Stapleton, G., Rodgers, P., Howse, J.: The impact of topological and graphical choices on the perception of Euler diagrams. Inf. Sci. 330, 455–482 (2016)

    Article  Google Scholar 

  4. Chow, S.: Generating and drawing area-proportional euler and venn diagrams. Ph.D. thesis, University of Victoria (2007)

    Google Scholar 

  5. Collins, C., Penn, G., Carpendale, M.S.T.: Bubble sets: revealing set relations with isocontours over existing visualizations. IEEE Trans. Vis. Comput. Graph. 15(6), 1009–1016 (2009)

    Article  Google Scholar 

  6. Farrell, G., Sousa, W.: Repeat victimization and hot spots: the overlap and its implication for crime control and problem-oriented policing. Crim. Prev. Stud. 12, 221–240 (2001)

    Google Scholar 

  7. Flower, J., Howse, J.: Generating Euler diagrams. In: Hegarty, M., Meyer, B., Narayanan, N.H. (eds.) Diagrams 2002. LNCS (LNAI), vol. 2317, pp. 61–75. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46037-3_6

    Chapter  Google Scholar 

  8. Flower, J., Howse, J., Taylor, J.: Nesting in Euler diagrams: syntax, semantics and construction. Softw. Syst. Model. 3, 55–67 (2004)

    Article  Google Scholar 

  9. Gottfried, B.: A comparative study of linear and region based diagrams. J. Spatial Inf. Sci. 2015(10), 3–20 (2015)

    Google Scholar 

  10. Ip, E.: Visualizing multiple regression. J. Stat. Educ. 9(1) (2001). https://doi.org/10.1080/10691898.2001.11910646

  11. Kestler, H., Muller, A., Liu, H., Kane, D., Zeeberg, B., Weinstein, J.: Euler diagrams for visualizing annotated gene expression data. In: Euler Diagrams (2005)

    Google Scholar 

  12. Leskovec, J., Krevl, A.: SNAP datasets: Stanford large network dataset collection, June 2014. http://snap.stanford.edu/data. Accessed Sept 2017

  13. Pruesse, G., Ruskey, F.: All Simple Venn Diagrams are Hamiltonian. arXiv e-prints, April 2015

    Google Scholar 

  14. Riche, N., Dwyer, T.: Untangling Euler diagrams. IEEE Trans. Vis. Comput. Graph. 16(6), 1090–1099 (2010)

    Article  Google Scholar 

  15. Rodgers, P., Zhang, L., Fish, A.: General Euler diagram generation. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 13–27. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87730-1_6

    Chapter  Google Scholar 

  16. Rodgers, P., Zhang, L., Purchase, H.: Wellformedness properties in Euler diagrams: which should be used? IEEE Trans. Vis. Comput. Graph. 18(7), 1089–1100 (2012)

    Article  Google Scholar 

  17. Rodgers, P.: General embedding method (with diagram library). http://www.eulerdiagrams.com/Library.htm. Accessed Oct 2017

  18. Rodgers, P., Stapleton, G., Chapman, P.: Visualizing sets with linear diagrams. ACM Trans. Comput.-Hum. Interact. 22(6), 27:1–27:39 (2015). http://doi.acm.org/10.1145/2810012

    Article  Google Scholar 

  19. Sato, Y., Masuda, S., Someya, Y., Tsujii, T., Watanabe, S.: An fMRI analysis of the efficacy of Euler diagrams in logical reasoning. In: IEEE Symposium on Visual Languages and Human-Centric Computing (2015)

    Google Scholar 

  20. Simonetto, P.: Visualisation of overlapping sets and clusters with Euler diagrams. Ph.D. thesis, Université Bordeaux (2012)

    Google Scholar 

  21. Stapleton, G., Flower, J., Rodgers, P., Howse, J.: Automatically drawing Euler diagrams with circles. J. Vis. Lang. Comput. 23(3), 163–193 (2012)

    Article  Google Scholar 

  22. Stapleton, G., Rodgers, P., Howse, J.: A general method for drawing area-proportional Euler diagrams. J. Vis. Lang. Comput. 22(6), 426–442 (2011)

    Article  Google Scholar 

  23. Stapleton, G., Rodgers, P., Howse, J., Zhang, L.: Inductively generating Euler diagrams. IEEE Trans. Vis. Comput. Graph. 17(1), 88–100 (2011)

    Article  Google Scholar 

  24. Thièvre, J., Viaud, M., Verroust-Blondet, A.: Using Euler diagrams in traditional library environments. In: Euler Diagrams. ENTCS, vol. 134, pp. 189–202 (2005)

    Google Scholar 

  25. Venn, J.: On the diagrammatic and mechanical representation of propositions and reasonings. Philos. Mag. 10(59), 1–18 (1880)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almas Baimagambetov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baimagambetov, A., Howse, J., Stapleton, G., Delaney, A. (2018). Generating Effective Euler Diagrams. In: Chapman, P., Stapleton, G., Moktefi, A., Perez-Kriz, S., Bellucci, F. (eds) Diagrammatic Representation and Inference. Diagrams 2018. Lecture Notes in Computer Science(), vol 10871. Springer, Cham. https://doi.org/10.1007/978-3-319-91376-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91376-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91375-9

  • Online ISBN: 978-3-319-91376-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics