Skip to main content

Supervised Learning of How to Blend Light Transport Simulations

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods (MCQMC 2016)

Abstract

Light transport simulation is a popular approach for rendering photorealistic images. However, since different algorithms have different efficiencies depending on input scene configurations, a user would try to find the most efficient algorithm based on trials and errors. This selection of an algorithm can be cumbersome because a user needs to know technical details of each algorithm. We propose a framework which blends the results of two different rendering algorithms, such that a blending weight per pixel becomes automatically larger for a more efficient algorithm. Our framework utilizes a popular machine learning technique, regression forests, for analyzing statistics of outputs of rendering algorithms and then generating an appropriate blending weight for each pixel. The key idea is to determine blending weights based on classification of path types. This idea is inspired by the same common practice in movie industries; an artist composites multiple rendered images where each image contains only a part of light transport paths (e.g., caustics) rendered by a specific algorithm. Since our framework treats each algorithm as a black-box, we can easily combine very different rendering algorithms as long as they eventually generate the same results based on light transport simulation. The blended results with our algorithm are almost always more accurate than taking the average, and no worse than the results with an inefficient algorithm alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  2. Georgiev, I., Krivanek, J., Davidovic, T., Slusallek, P.: Light transport simulation with vertex connection and merging. ACM Trans. Graph. (Proceedings of SIGGRAPH Asia) 31(6) (2012). Article 192

    Article  Google Scholar 

  3. Gritz, L., Stein, C., Kulla, C., Conty, A.: Open shading language. ACM SIGGRAPH 2010 Talks (2010). Article 33

    Google Scholar 

  4. Hachisuka, T., Jensen, H.W.: Stochastic progressive photon mapping. ACM Trans. Graph. (Proceedings of SIGGRAPH Asia) 28(5) (2009). Article 141

    Google Scholar 

  5. Hachisuka, T., Ogaki, S., Jensen, H.W.: Progressive photon mapping. ACM Trans. Graph. (Proceedings of SIGGRAPH Asia) 27(5) (2008). Article 130

    Google Scholar 

  6. Hachisuka, T., Pantaleoni, J., Jensen, H.W.: A path space extension for robust light transport simulation. ACM Trans. Graph. (Proceedings of SIGGRAPH Asia) 31(6) (2012). Article 191

    Article  Google Scholar 

  7. Havran, V.: Heuristic ray shooting algorithms. Ph.D. thesis, Department of Computer Science and Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, November (2000)

    Google Scholar 

  8. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall PTR, Upper Saddle River (1998)

    MATH  Google Scholar 

  9. Heckbert, P.S.: Adaptive radiosity textures for bidirectional ray tracing. Comput. Graph. (Proceedings of SIGGRAPH) 24(4), 145–154 (1990)

    Article  Google Scholar 

  10. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  11. Jakob, W.: Mitsuba renderer. http://www.mitsuba-renderer.org (2010)

  12. Jakob, W., Marschner, S.: Manifold exploration: a Markov chain Monte Carlo technique for rendering scenes with difficult specular transport. ACM Trans. Graph. (Proceedings of SIGGRAPH) 31(4) (2012)

    Article  Google Scholar 

  13. Jakob, W., Regg, C., Jarosz, W.: Progressive expectation–maximization for hierarchical volumetric photon mapping. Comput. Graph. Forum (Proceedings of the Eurographics Symposium on Rendering) 30(4) (2011)

    Article  Google Scholar 

  14. Jensen, H.W.: Global illumination using photon maps. In: Proceedings of the Eurographics Symposium on Rendering, pp. 21–30 (1996)

    Google Scholar 

  15. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.B., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. CoRR arXiv:1408.5093 (2014)

  16. Kajiya, J.T.: The rendering equation. Comput. Graph. (Proceedings of SIGGRAPH) 143–150 (1986)

    Article  Google Scholar 

  17. Kalantari, N.K., Bako, S., Sen, P.: A machine learning approach for filtering Monte Carlo noise. ACM Trans. Graph. (TOG) (Proceedings of SIGGRAPH 2015) 34(4) (2015)

    Article  Google Scholar 

  18. Kaplanyan, A.S., Dachsbacher, C.: Path space regularization for holistic and robust light transport. Comput. Graph. Forum (Proceedings of the Eurographics Symposium on Rendering) 32(2), 63–72 (2013)

    Article  Google Scholar 

  19. Ladický, L., Jeong, S., Solenthaler, B., Pollefeys, M., Gross, M.: Data-driven fluid simulations using regression forests. ACM Trans. Graph. (Proceedings of SIGGRAPH Asia) 34(6), 199 (2015)

    Google Scholar 

  20. Lafortune, E., Willems, Y.D.: Bi-directional path-tracing. In: Proceedings of Compugraphics, pp. 145–153 (1993)

    Google Scholar 

  21. MacDonald, J.D., Booth, K.S.: Heuristics for ray tracing using space subdivision. Visual Comput. 6(3), 153–166 (1990)

    Article  Google Scholar 

  22. Nalbach, O., Arabadzhiyska, E., Mehta, D., Seidel, H.-P., Ritschel, T.: Deep shading: convolutional neural networks for screen-space shading. Comput. Graph. Forum (Proceedings of the EGSR 2017) 36(4) (2017)

    Article  Google Scholar 

  23. Ren, P., Wang, J., Gong, M., Lin, S., Tong, X., Guo, B.: Global illumination with radiance regression functions. ACM Trans. Graph. (Proceedings of SIGGRAPH) 32(4), 130:1–130:12 (2013)

    Article  Google Scholar 

  24. Ren, S., Cao, X., Wei, Y., Sun, J.: Face alignment at 3000 fps by regressing local binary features. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  25. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision (IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  26. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from a single depth images. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011)

    Google Scholar 

  27. Tang, D., Yu, T.-H., Kim, T.-K.: Real-time articulated hand pose estimation using semi-supervised transductive regression forests. In: The IEEE International Conference on Computer Vision (ICCV) (2013)

    Google Scholar 

  28. Veach, E.: Robust Monte Carlo methods for light transport simulation. Ph.D. thesis, Stanford University, USA (1998). AAI9837162

    Google Scholar 

  29. Veach, E., Guibas, L.J.: Bidirectional estimator for light transport. In: Proceedings of the Eurographics Symposium on Rendering, pp. 147–162 (1994)

    Google Scholar 

  30. Veach, E., Guibas, L.J.: Optimally combining sampling techniques for Monte Carlo rendering. In: Proceedings of SIGGRAPH ’95, pp. 419–428 (1995)

    Google Scholar 

  31. Veach, E., Guibas, L.J.: Metropolis light transport. Proceedings of SIGGRAPH 97, 65–76 (1997)

    Google Scholar 

  32. Vorba, J., Karlík, O., Šik, M., Ritschel, T., Křivánek, J.: On-line learning of parametric mixture models for light transport simulation. ACM Trans. Graph. (Proceedings of SIGGRAPH) 33(4) (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiya Hachisuka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Otsu, H., Kinuwaki, S., Hachisuka, T. (2018). Supervised Learning of How to Blend Light Transport Simulations. In: Owen, A., Glynn, P. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2016. Springer Proceedings in Mathematics & Statistics, vol 241. Springer, Cham. https://doi.org/10.1007/978-3-319-91436-7_23

Download citation

Publish with us

Policies and ethics