Skip to main content

A Comparative Analysis of Accurate and Robust Bi-objective Scheduling Heuristics for Datacenters

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications (IPMU 2018)

Abstract

This article presents and evaluates twenty-four novel bi-objective efficient heuristics for the simultaneous optimization of makespan and robustness in the context of the static robust tasks mapping problem for datacenters. The experimental analysis compares the proposed methods over realistic problem scenarios. We study their accuracy, as well as the regions of the search space they explore, by comparing versus state-of-the-art Pareto fronts, obtained with four different specialized versions of well-known multi-objective evolutionary algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, S., Maciejewski, A., Siegel, H., Kim, J.: Measuring the robustness of a resource allocation. IEEE Trans. Parall. Distrib. Syst. 51(7), 630–641 (2004)

    Article  Google Scholar 

  2. Artigues, C., Leus, R., Talla, F.: Robust optimization for resource-constrained project scheduling with uncertain activity durations. Flex. Serv. Manuf. J. 25(1–2), 175–205 (2013)

    Article  Google Scholar 

  3. Blazewicz, J., Ecker, K., Pesch, E., Schmidt, G., Weglarz, J.: Handbook on Scheduling-From Theory to Applications. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-32220-7

    Book  MATH  Google Scholar 

  4. Braun, T., Siegel, H., Beck, N., Bölöni, L., Maheswaran, M., Reuther, A., Robertson, J., Theys, M., Yao, B.: A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems. J. Parall. Distrib. Comput. 61(6), 810–837 (2001)

    Article  Google Scholar 

  5. Canon, L., Jeannot, E.: Evaluation and optimization of the robustness of DAG schedules in heterogeneous environments. IEEE Trans. Parall. Distrib. Systems 21(4), 532–546 (2010)

    Article  Google Scholar 

  6. Chiraphadhanakul, V., Barnhart, C.: Robust flight schedules through slack re-allocation. EURO J. Transp. Logist. 2(4), 277–306 (2013)

    Article  Google Scholar 

  7. De Falco, I., Cioppa, A.D., Maisto, D., Scafuri, U., Tarantino, E.: A multiobjective extremal optimization algorithm for efficient mapping in grids. In: Mehnen, J., Köppen, M., Saad, A., Tiwari, A. (eds.) Applications of Soft Computing, vol. 58, pp. 367–377. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-89619-7_36

    Chapter  Google Scholar 

  8. Dorronsoro, B., Bouvry, P., Cañero, J., Maciejewski, A., Siegel, H.: Multi-objective robust static mapping of independent tasks on grids. In: IEEE Congress on Evolutionary Computation, pp. 3389–3396 (2010)

    Google Scholar 

  9. Hart, E., Ross, P., Nelson, J.: Producing robust schedules via an artificial immune system. In: World Congress on Computational Intelligence, pp. 464–469 (1998)

    Google Scholar 

  10. Herrmann, J.: Handbook of Production Scheduling. International Series in Operations Research & Management. Springer, Heidelberg (2006). https://doi.org/10.1007/0-387-33117-4

    Book  MATH  Google Scholar 

  11. Horowitz, E., Sahni, S.: Exact and approximate algorithms for scheduling nonidentical processors. J. ACM 23, 317–327 (1976)

    Article  MathSciNet  Google Scholar 

  12. Iturriaga, S., García, S., Nesmachnow, S.: An empirical study of the robustness of energy-aware schedulers for high performance computing systems under uncertainty. In: Hernández, G., et al. (eds.) High Performance Computing, vol. 485, pp. 143–157. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45483-1_11

    Chapter  Google Scholar 

  13. Jensen, M.: Improving robustness and flexibility of tardiness and total flow-time job shops using robustness measures. Appl. Soft Comput. 1, 35–52 (2001)

    Article  Google Scholar 

  14. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Kluwer Academic Publishers, Norwell (1997)

    Book  Google Scholar 

  15. Leon, V., Wu, S., Storer, R.: Robustness measures and robust scheduling for job shops. IIE Trans. 26(5), 32–43 (1994)

    Article  Google Scholar 

  16. Leung, J.: Handbook of Scheduling-Algorithms, Models, and Performance Analysis. Chapman & Hall/CRC, New York (2004)

    MATH  Google Scholar 

  17. Luna, F., Chicano, F., Alba, E.: Robust solutions for the software project scheduling problem: a preliminary analysis. Int. J. Metaheuristics 2(1), 59–79 (2012)

    Article  MathSciNet  Google Scholar 

  18. Luo, P., Lü, K., Shi, Z.: A revisit of fast greedy heuristics for mapping a class of independent tasks onto heterogeneous computing systems. J. Parall. Distrib. Comput. 67(6), 695–714 (2007)

    Article  Google Scholar 

  19. Nesmachnow, S.: Computación científica de alto desempeño en la Facultad de Ingeniería, Universidad de la República. Revista de la Asociación de Ingenieros del Uruguay 61(1), 12–15 (2010). Text in Spanish

    Google Scholar 

  20. Nesmachnow, S., Cancela, H., Alba, E.: A parallel micro evolutionary algorithm for heterogeneous computing and grid scheduling. Appl. Soft Comput. 12(2), 626–639 (2012)

    Article  Google Scholar 

  21. Nesmachnow, S., Dorronsoro, B., Pecero, J., Bouvry, P.: Energy-aware scheduling on multicore heterogeneous grid computing systems. J. Grid Comput. 11(4), 653–680 (2013)

    Article  Google Scholar 

  22. Pinel, F., Dorronsoro, B., Bouvry, P.: Solving very large instances of the scheduling of independent tasks problem on the GPU. J. Parall. Distrib. Comput. 73, 101–110 (2013)

    Article  Google Scholar 

  23. Wu, S., Byeon, E., Storer, R.: A graph-theoretic decomposition of the job shop scheduling problem to achieve scheduling robustness. Oper. Res. 47(1), 113–124 (1999)

    Article  MathSciNet  Google Scholar 

  24. Xhafa, F., Carretero, J., Dorronsoro, B., Alba, E.: A tabu search algorithm for scheduling independent jobs in computational grids. Comput. Inf. 28, 1001–1014 (2009)

    MATH  Google Scholar 

Download references

Acknowledgment

B. Dorronsoro would like to acknowledge the Spanish MINECO and ERDF for the support provided under contract TIN2014-60844-R (the SAVANT project). The work of S. Nesmachnow is partly funded by ANII and PEDECIBA, Uruguay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernabé Dorronsoro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nesmachnow, S., Dorronsoro, B. (2018). A Comparative Analysis of Accurate and Robust Bi-objective Scheduling Heuristics for Datacenters. In: Medina, J., Ojeda-Aciego, M., Verdegay, J., Perfilieva, I., Bouchon-Meunier, B., Yager, R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications. IPMU 2018. Communications in Computer and Information Science, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-319-91479-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91479-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91478-7

  • Online ISBN: 978-3-319-91479-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics