Skip to main content

Time-Stepping and Krylov Methods for Large-Scale Instability Problems

  • Chapter
  • First Online:
Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 50))

Abstract

With the ever increasing computational power available and the development of high-performances computing, investigating the properties of realistic very large-scale nonlinear dynamical systems has become reachable. It must be noted however that the memory capabilities of computers increase at a slower rate than their computational capabilities. Consequently, the traditional matrix-forming approaches wherein the Jacobian matrix of the system considered is explicitly assembled become rapidly intractable. Over the past two decades, so-called matrix-free approaches have emerged as an efficient alternative. The aim of this chapter is thus to provide an overview of well-grounded matrix-free methods for fixed points computations and linear stability analyses of very large-scale nonlinear dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the non-normality of \(\varvec{\mathcal {A}}\) also implies that its right and left eigenvectors are different. This observation may have large consequences in fluid dynamics, particularly when addressing the problems of optimal linear control and/or estimation of strongly non-parallel flows.

  2. 2.

    Formally, a convex optimization problem reads

    $$\begin{aligned} \begin{aligned} \mathop {\text {manimize}}\limits _{\mathbf {x}}\,&\mathcal {J} \left( \mathbf {x} \right) \\ \mathop {\text {subject~to}}&\, g_i \left( \mathbf {x} \right) \le 0, \ i = 1, \ldots , m \\ ~&h_i \left( \mathbf {x} \right) = 0, \ i = 1, \ldots , p, \end{aligned} \end{aligned}$$

    where the objective function \(\mathcal {J} \left( \mathbf {x} \right) \) and the inequality constraints functions \(g_i \left( \mathbf {x} \right) \) are convex. The conditions on the equality constraints functions \(h_i \left( \mathbf {x} \right) \) are more restrictive as they need to be affine functions, i.e. of the form \(h_i \left( \mathbf {x} \right) = \mathbf {a}_i^T \mathbf {x} + b_i\). See the book by Boyd and Vandenberghe [9] for extensive details about convex optimization.

  3. 3.

    Given an appropriate inner product, the adjoint operator \(\varvec{\mathcal {A}}^{\dagger }\) is defined such that

    $$\begin{aligned} \langle \mathbf {v} \vert \varvec{\mathcal {A}} \mathbf {x} \rangle = \langle \varvec{\mathcal {A}}^{\dagger } \mathbf {v} \vert \mathbf {x} \rangle , \end{aligned}$$

    where \(\langle \mathbf {a} \vert \mathbf {b} \rangle \) denotes the inner product of \(\mathbf {a}\) and \(\mathbf {b}\). If one consider the classical Euclidean inner product, the adjoint operator is simply given by

    $$\varvec{\mathcal {A}}^{\dagger } = \varvec{\mathcal {A}}^H$$

    where \(\varvec{\mathcal {A}}^H\) is the Hermitian (i.e. complex-conjugate transpose) of \(\varvec{\mathcal {A}}\). It must be noted finally that the direct operator \(\varvec{\mathcal {A}}\) and the adjoint one \(\varvec{\mathcal {A}}^{\dagger }\) have the same eigenspectrum. This last observation is a key point when one aims at validating the numerical implementation of an adjoint solver.

References

  1. Intel Math Kernel Library. Reference Manual. Intel Corporation, 2009

    Google Scholar 

  2. Åkervik, E., Brandt, L., Henningson, D.S., Hœpffner, J., Marxen, O., Schlatter, P.: Steady solutions of the Navier-Stokes equations by selective frequency damping. Phys. Fluids 18(6), 068102 (2006)

    Article  Google Scholar 

  3. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: Lapack Users’ Guide, 3rd edn. SIAM (1999)

    Google Scholar 

  4. Antoulas, A.C.: Approximation of Large-scale Dynamical Systems. SIAM, Philadelphia (2005)

    Google Scholar 

  5. Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. Appl. Math. 9, 1951 (1951)

    Article  MathSciNet  Google Scholar 

  6. Bagheri, S., Åkervik, E., Brandt, L., Henningson, D.S.: Matrix-free methods for the stability and control of boundary layers. AIAA J. 47(5), 1057–1068 (2009)

    Article  Google Scholar 

  7. Bagheri, S., Henningson, D.S., Hoepffner, J., Schmid, P.J.: Input-output analysis and control design applied to a linear model of spatially developing flows. Appl. Mech. Rev. 62(2), 020803 (2009)

    Article  Google Scholar 

  8. Basley, J., Pastur, L.R., Lusseyran, F., Faure, T.M., Delprat, N.: Experimental investigation of global structures in an incompressible cavity flow using time-resolved PIV. Exp. Fluids 50, 905–918 (2011)

    Article  Google Scholar 

  9. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  10. Brandt, L.: The lift-up effect: The linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech.-B/Fluids 47, 80–96 (2014)

    Article  MathSciNet  Google Scholar 

  11. Bridges, T.J., Morris, P.J.: Differential eigenvalue problems in which the parameter appears nonlinearly. J. Comput. Phys. 55, 437–460 (1984)

    Article  MathSciNet  Google Scholar 

  12. Bridges, T.J., Morris, P.J.: Boundary layer stability calculations. Phys. Fluids 30:(11) (1987)

    Article  Google Scholar 

  13. Bucci, A.M.: Subcritical and supercritical dynamics of incompressible flow over miniaturized roughness elements. Ph.D. thesis, École Nationale Supérieure d’Arts et Métiers-ENSAM (2017)

    Google Scholar 

  14. Bucci, M.A., Puckert, D.K., Andriano, C., Loiseau, J.-Ch., Cherubini, S., Robinet, J.-Ch., Rist. U.: Roughness-induced transition by quasi-resonance of a varicose global mode. J. Fluid Mech. 836, 167–191 (2018)

    Article  MathSciNet  Google Scholar 

  15. Campobasso, M.S., Giles, M.B.: Stabilization of a linear flow solver for turbomachinery aeroelasticity using recursive projection method. AIAA J. 42(9), 1765–1774 (2004)

    Article  Google Scholar 

  16. Chen, K.K., Rowley, C.W.:. H2 optimal actuator and sensor placement in the linearised complex Ginzburg-Landau system. J. Fluid Mech. 681, 241–260 (2011)

    Article  MathSciNet  Google Scholar 

  17. Citro, V., Giannetti, F., Luchini, P., Auteri, F.: Global stability and sensitivity analysis of boundary-layer flows past a hemispherical roughness element. Phys. Fluids 27(8), 084110 (2015)

    Article  Google Scholar 

  18. Citro, V., Luchini, P., Giannetti, F., Auteri, F.: Efficient stabilization and acceleration of numerical simulation of fluid flows by residual recombination. J. Comput. Phys. 344, 234–246 (2017)

    Article  MathSciNet  Google Scholar 

  19. Cunha, G., Passaggia, P.-Y., Lazareff, M.: Optimization of the selective frequency damping parameters using model reduction. Phys. Fluids 27(9), 094103 (2015)

    Article  Google Scholar 

  20. Davey, A., Drazin, P.J.: The stability of Poiseuille flow in a pipe. J. Fluid Mech. 36, 209–218 (1969)

    Article  Google Scholar 

  21. Dijkstra, Henk A., Wubs, Fred W., Cliffe, Andrew K., Doedel, Eusebius, Dragomirescu, Ioana F., Eckhardt, Bruno, Gelfgat, Alexander Yu., Hazel, Andrew L., Lucarini, Valerio, Salinger, Andy G., et al.: Numerical bifurcation methods and their application to fluid dynamics: analysis beyond simulation. Commun. Comput. Phys. 15(1), 1–45 (2014)

    Article  MathSciNet  Google Scholar 

  22. Edwards, W.S., Tuckerman, L.S., Friesner, R.A., Sorensen, D.C.: Krylov methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 110(1), 82–102 (1994)

    Article  MathSciNet  Google Scholar 

  23. Farano, Mirko, Cherubini, Stefania, Robinet, Jean-Christophe, De Palma, Pietro: Subcritical transition scenarios via linear and nonlinear localized optimal perturbations in plane poiseuille flow. Fluid Dyn. Res. 48(6), 061409 (2016)

    Article  MathSciNet  Google Scholar 

  24. Faure, T.M., Adrianos, P., Lusseyran, F., Pastur, L.: Visualizations of the flow inside an open cavity at medium range Reynolds numbers. Exp. Fluids 42, 169–184 (2007)

    Article  Google Scholar 

  25. Faure, T.M., Pastur, L., Lusseyran, F., Fraigneau, Y., Bisch, D.: Three-dimensional centrifugal instabilities development inside a parallelepipedic open cavity of various shape. Exp. Fluids 47, 395–410 (2009)

    Article  Google Scholar 

  26. Fischer, P., Kruse, J., Mullen, J., Tufo, H., Lottes, J., Kerkemeier, S.: Open source spectral element CFD solver (2008). https://nek5000.mcs.anl.gov/index.php/MainPage

  27. Foures, D.P.G., Caulfield, C.P., Schmid, P.J.: Optimal mixing in two-dimensional plane Poiseuille flow at finite Péclet number. J. Fluid Mech. 748, 241–277 (2012)

    Article  Google Scholar 

  28. Foures, D.P.G., Caulfield, C.P., Schmid, P.J.: Localization of flow structures using \(\infty \)-norm optimization. J. Fluid Mech. 729, 672–701 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Foures, D.P.G., Caulfield, C.P., Schmid, P.J.: Variational framework for flow optimization using seminorm constraints. Phys. Rev. E 86(2), 026306 (2014)

    Article  Google Scholar 

  30. Gary, J., Helgason, R.: A matrix method for ordinary differential eigenvalue problems. J. Comput. Phys. 5, 169–187 (1970)

    Article  MathSciNet  Google Scholar 

  31. Gaster, M., Jordinson, R.: On the eigenvalues of the Orr-Sommerfeld equation. J. Fluid Mech. 72, 121–133 (1975)

    Article  Google Scholar 

  32. Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press (2012)

    Google Scholar 

  33. Hascoët, L., Pascual, V.: The Tapenade Automatic Differentiation tool: principles, model, and specification. ACM Trans. Math. Softw. 39(3), 1–43 (2013)

    Article  Google Scholar 

  34. Hecht, F.: New development in freefem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Hestenes, M.R., Stiefel, E.: Methods of Conjugate Gradients for Solving Linear Systems, vol. 49. NBS Washington, DC (1952)

    Article  MathSciNet  Google Scholar 

  36. Hunt, R.E., Crighton, D.G.: Instability of Flows in Spatially Developing Media. In: Proceedings of the Royal Society of London A, vol. 435, pp. 109–128. The Royal Society (1991)

    Article  Google Scholar 

  37. Ilak, M., Schlatter, P., Bagheri, S., Henningson, D.S.: Bifurcation and stability analysis of a jet in cross-flow: onset of global instability at a low velocity ratio. J. Fluid Mech. 696, 94–121 (2012)

    Article  Google Scholar 

  38. Janovskỳ, V., Liberda, O.: Continuation of invariant subspaces via the recursive projection method. Appl. Math. 48(4), 241–255 (2003)

    Article  MathSciNet  Google Scholar 

  39. Jordi, B.E., Cotter, C.J., Sherwin, S.J.: Encapsulated formulation of the selective frequency damping method. Phys. Fluids 26(3), 034101 (2014)

    Article  Google Scholar 

  40. Jordi, B.E., Cotter, C.J., Sherwin, S.J.: An adaptive selective frequency damping method. Phys. Fluids 27(9), 094104 (2015)

    Article  Google Scholar 

  41. Jordinson, R.: The flat plate boundary layer. Part 1. Numerical integration of the Orr-Sommerfeld equation. J. Fluid Mech. 43, 801–811 (1970)

    Article  Google Scholar 

  42. Jordinson, R.: Spectrum of eigenvalues of the Orr-Sommerfeld equation for blasius flow. Phys. Fluids 14, 2535 (1971)

    Article  Google Scholar 

  43. Karniadakis, G., Sherwin, S.: Spectral/HP Element Methods for Computational Fluid Dynamics, 2nd edn. Oxford University Press, Oxford (2005)

    Google Scholar 

  44. Kerswell, R.R., Pringle, C.C.T., Willis, A.P.: An optimization approach for analysing nonlinear stability with transition to turbulence in fluids as an exemplar. Rep. Prog. Phys. 77(8), 085901 (2014)

    Article  MathSciNet  Google Scholar 

  45. Kerswell, R.R.: Nonlinear nonmodal stability theory. Ann. Rev. Fluid Mech. 50, 319–345 (2018)

    Article  MathSciNet  Google Scholar 

  46. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004)

    Article  MathSciNet  Google Scholar 

  47. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Stand. Sec. B 45, 255–282 (1950)

    Article  MathSciNet  Google Scholar 

  48. Landahl, M.T.: A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98(2), 243–251 (1980)

    Article  MathSciNet  Google Scholar 

  49. Loiseau, Jean-Christophe, Robinet, Jean-Christophe, Cherubini, Stefania, Leriche, Emmanuel: Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations. J. Fluid Mech. 760, 175–211 (2014)

    Article  MathSciNet  Google Scholar 

  50. Luchini, P., Bottaro, A.: Adjoint equations in stability analysis. Ann. Rev. Fluid Mech. 46, 493–517 (2014)

    Article  MathSciNet  Google Scholar 

  51. Mack, L.: Boundary layer stability theory. Technical report 900-277, Jet Propulsion Laboratory, Pasadena, 1969

    Google Scholar 

  52. Mack, L.: A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer. J. Fluid Mech. 73, 497–520 (1976)

    Article  Google Scholar 

  53. Malik, M.R.: Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86, 376–413 (1990)

    Article  Google Scholar 

  54. Malik, M.R., Zang, T.A., Hussaini, M.Y.: A spectral collocation method for the Navier-Stokes equations. J. Comput. Phys. 61, 64–88 (1985)

    Article  MathSciNet  Google Scholar 

  55. Manneville, P.: Transition to turbulence in wall-bounded flows: where do we stand? Mech. Eng. Rev. 3(2), 15–00684 (2016)

    Article  Google Scholar 

  56. Monokrousos, A., Åkervik, E., Brandt, L., Henningson, D.S.: Global three-dimensional optimal disturbances in the Blasius boundary-layer flow using time-steppers. J. Fluid Mech. 650, 181–214 (2010)

    Article  MathSciNet  Google Scholar 

  57. Nayar, M., Ortega, U.: Computation of selected eigenvalues of generalized eigenvalues problems. J. Comput. Phys. 108, 8–14 (1993)

    Article  MathSciNet  Google Scholar 

  58. Orszag, S.A.: Accurate solution of the Orr-Sommerfeld stability equation. J. Fluid Mech. 50, 659–703 (1970)

    Article  Google Scholar 

  59. Pernice, M., Walker, H.F.: NITSOL: a Newton iterative solver for nonlinear systems. SIAM J. Sci. Comput. 19(1), 302–318 (1998)

    Article  MathSciNet  Google Scholar 

  60. Peyret, R.: Spectral Methods for Incompressible Viscous Flow. Springer, New York (2002)

    Book  Google Scholar 

  61. Peyret, R., Taylor, T.: Computational Methods for Fluid Flows. Springer, New York (1983)

    Book  Google Scholar 

  62. Pruett, C.D., Gatski, T.B., Grosch, C.E., Thacker, W.D.: The temporally filtered navier-stokes equations: properties of the residual stress. Phys. Fluids 15(8), 2127–2140 (2003)

    Article  Google Scholar 

  63. Pruett, C.D., Thomas, B.C., Grosch, C.E., Gatski, T.B.: A temporal approximate deconvolution model for large-eddy simulation. Phys.Fluids 18(2), 028104 (2006)

    Article  Google Scholar 

  64. Yang, C., Lehoucq, R.B., Sorensen, D.C.: ARPACK user’s guide: Solution of large scale eigenvalue problems with implicitly restarted arnoldi methods. Technical Note, 1997

    Google Scholar 

  65. Rasthofer, U., Wermelinger, F., Hadijdoukas, P., Koumoutsakos, P.: Large scale simulation of cloud cavitation collapse. Procedia Comput. Sci. 108, 1763–1772 (2017)

    Article  Google Scholar 

  66. Renac, Florent: Improvement of the recursive projection method for linear iterative scheme stabilization based on an approximate eigenvalue problem. J. Comput. Phys. 230(14), 5739–5752 (2011)

    Article  MathSciNet  Google Scholar 

  67. Richez, F., Leguille, M., Marquet, O.: Selective frequency damping method for steady RANS solutions of turbulent separated flows around an airfoil at stall. Comput. Fluids 132(Supplement C), 51–61 (2016)

    Article  MathSciNet  Google Scholar 

  68. Saad, Y.: Iterative Methods for Sparse Linear Systems, vol. 82. SIAM (2003)

    Google Scholar 

  69. Schmid, P.J., Brandt, L.: Analysis of fluid systems: stability, receptivity, sensitivity. Lecture notes from the FLOW-NORDITA summer school on advanced instability methods for complex flows, Stockholm, Sweden, 2013. Appl. Mech. Rev. 66(2), 024803 (2014)

    Article  Google Scholar 

  70. Shaabani-Ardali, L., Sipp, D., Lesshafft, L.: Time-delayed feedback technique for suppressing instabilities in time-periodic flow. Phys. Rev. Fluids 2(11), 113904 (2017)

    Article  Google Scholar 

  71. Shroff, G.M., Keller, H.B.: Stabilization of unstable procedures: the recursive projection method. SIAM J. Numer. Anal. 30(4), 1099–1120 (1993)

    Article  MathSciNet  Google Scholar 

  72. Sipp, D., Lebedev, A.: Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333–358 (2007)

    Article  Google Scholar 

  73. Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13, 357–385 (1992)

    Article  MathSciNet  Google Scholar 

  74. Stewarson, K., Stuart, J.T.: A non-linear instability theory for a wave system in plane Poiseuille flow. J. Fluid Mech. 48, 529–545 (1971)

    Article  MathSciNet  Google Scholar 

  75. Stewart, G.W.: A Krylov-Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23, 601–614 (2001)

    Article  MathSciNet  Google Scholar 

  76. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Texts in Applied Mathematics, vol. 12, 3rd edn. Springer, Berlin (2002)

    Chapter  Google Scholar 

  77. Theofilis, V.: Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aerosp. Sci. 39, 249–315 (2003)

    Article  Google Scholar 

  78. Theofilis, V.: Global linear instability. Ann. Rev. Fluid Mech. 43, 319352 (2011)

    Article  MathSciNet  Google Scholar 

  79. Tuckerman, L.S., Barkley, D.: Bifurcation analysis for timesteppers. In: Numerical Methods for Bifurcation Problems and Large-scale Dynamical Systems, pp. 453–466. Springer, Berlin (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-Ch. Robinet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loiseau, JC., Bucci, M.A., Cherubini, S., Robinet, JC. (2019). Time-Stepping and Krylov Methods for Large-Scale Instability Problems. In: Gelfgat, A. (eds) Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics. Computational Methods in Applied Sciences, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-91494-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91494-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91493-0

  • Online ISBN: 978-3-319-91494-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics