Skip to main content

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 20))

Abstract

Heavy metal stress severely affects plant growth, development and reduces crop yield and productivity. Among different heavy metals , arsenic (As) is a toxic metalloid and a potent carcinogen. It not only hampers plant development but also causes severe health hazards to mankind once entered into the food chain. Infact, As contamination in the groundwater has turned out to be an epidemic in many regions of South and Southeast Asia. Naturally, As is present in trace amounts in the environment, however, geogenic sources and anthropogenic activities have tremendously increased the level of As in the soil. Epidemiological studies have reported that As poses severe health risk in humans. In plants, As affects several physiological and molecular processes, therefore, it is prerequisite to understand As uptake, translocation, accumulation and detoxification. As a part of detoxification mechanism, As undergoes chemical modifications including reduction, methylation , and glutathione conjugation. Alleviation of As phytotoxicity is important and attempts are being made in exploring the molecular components associated with As detoxification and tolerance in plants. In this context, it is important to understand the genetic control of As uptake and accumulation, which might help in protecting the food crops from contamination. In the past decade, significant knowledge has been generated at the level of “omics” which includes genomics, proteomics and metabolomics. Studies have demonstrated that plants’ response to stress is associated with profound changes at the level of transcriptome. Modulation in the expression of genes involved in plants’ stress response significantly assists in unravelling the pathways and networks providing tolerance towards stress. The information available through transcriptome studies led to the functional characterization of genes and development of plant varieties resistant to As stress. This chapter summarizes the current knowledge on As contamination, transcriptional regulation and biotechnological advances in the functional genomics of As uptake, transport, accumulation and detoxification in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abercrombie JM, Halfhill MD, Ranjan P, Rao MR, Saxton AM, Yuan JS, Stewart CN Jr (2008) Transcriptional responses of Arabidopsis thaliana plants to As(V) stress. BMC Plant Biol 8:87–96

    PubMed  PubMed Central  Google Scholar 

  • Ahsan N, Lee DG, Alam I, Kim PJ, Lee JJ, Ahn YO, Kwak SS, Lee IJ, Bahk JD, Kang KY, Renaut J, Komatsu S, Lee BH (2008) Comparative proteomic study of arsenic induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 8:3561–3576

    CAS  PubMed  Google Scholar 

  • Ali W, Isner JC, Isayenkov SV, Liu W, Zhao FJ, Maathuis FJM (2012) Heterologous expression of the yeast arsenite efflux system ACR3 improves Arabidopsis thaliana tolerance to arsenic stress. New Phytol 194:716–723

    CAS  PubMed  Google Scholar 

  • Aposhian HV (1997) Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol 37:397–419

    CAS  PubMed  Google Scholar 

  • Bakhat HF, Zia Z, Fahad S, Abbas S et al (2017) Arsenic uptake, accumulation and toxicity in rice plants: Possible remedies for its detoxification: a review. Environ Sci Pollut Res 24:9142–9158

    CAS  Google Scholar 

  • Banerjee M, Banerjee N, Bhattacharjee P, Mondal D, Lythgoe PR, Martinez M, Pan J, Polya DA, Giri AK (2013) High arsenic in rice is associated with elevated genotoxic effects in humans. Sci Rep 3:1–8

    Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstam L, Nriagu J (2000) Molecular aspects of arsenic stress. J Toxicol Environ Health B Crit Rev 3:293–322

    CAS  PubMed  Google Scholar 

  • Bienert GP, Thorsen M, Schüssler MD (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Plant Biol 6:e26

    Google Scholar 

  • Bleeker PM, Hakvoort HWJ, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J 45:917–929

    CAS  PubMed  Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM et al (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarty D, Trivedi PK, Misra P, Tiwari M, Shri M, Shukla D, Kumar S, Rai A, Pandey A, Nigam D, Tripathi RD, Tuli R (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74:688–702

    CAS  PubMed  Google Scholar 

  • Chao DY, Chen Y, Chen J, Shi S, Chen Z, Wang C et al (2014) Genome-wide association mapping identifies a new arsenate reductase critical for limiting arsenic accumulation in plants. PLoS Biol 12:e1002009

    PubMed  PubMed Central  Google Scholar 

  • Chen Y, Hua C-Y, Jia M-R, Fu J-W et al (2017) Heterologous expression of Pteris vittata arsenite antiporter PvACR3;1 reduces arsenic accumulation in plant shoots. Environ Sci Technol 51:10387–10395

    CAS  PubMed  Google Scholar 

  • Chen J, Qin J, Zhu YG, de Lorenzo V, Rosen BP (2013a) Engineering the soil bacterium Pseudomonas putida for arsenic methylation. Appl Environ Microbiol 79:4493–4495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Xu W, Shen H, Yan H, He Z, Ma M (2013b) Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach. Environ Sci Technol 47:9355–9362

    CAS  PubMed  Google Scholar 

  • Christen K (2001) The arsenic threat worsens. Environ Sci Technol 35:286A–291A

    CAS  PubMed  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764

    CAS  Google Scholar 

  • Danh LT, Truong P, Mammucari R, Foster N (2014) A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata. Int J Phytorem 16:429–453

    CAS  Google Scholar 

  • Dasgupta T, Hossain SA, Meharag AA, Price AH (2004) An arsenate tolerance gene on chromosome 6 of rice. New Phytol 163:45–49

    CAS  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    CAS  PubMed  Google Scholar 

  • Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci USA 103:5413–5418

    CAS  PubMed  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Dwivedi S, Deeba F, Kumar S, Suman S, Adhikari B, Shukla Y, Trivedi PK, Pandey V, Tripathi RD (2015a) Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves. Sci Rep 5:e16205

    Google Scholar 

  • Dixit G, Singh AP, Kumar A, Singh PK, Kumar S, Dwivedi S, Trivedi PK, Pandey V, Norton GJ, Dhankher OP, Tripathi RD (2015b) Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. J Hazard Mater 298:241–251

    CAS  PubMed  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Mishra S, Dwivedi S, Kumar S, Trivedi PK, Pandey V, Tripathi RD (2016) Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiol Biochem 99:86–96

    CAS  PubMed  Google Scholar 

  • Duan G, Kamiya T, Ishikawa S, Arao T, Fujiwara T (2012) Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains. Plant Cell Physiol 53:154–163

    CAS  PubMed  Google Scholar 

  • Duan GL, Zhou Y, Tong YP, Mukhopadhyay R, Rosen BP, Zhu YG (2007) A CDC25 homologue from rice functions as an arsenate reductase. New Phytol 174:311–321

    CAS  PubMed  Google Scholar 

  • Ellis DR, Gumaelius L, Indriolo E, Pickering IJ, Banks JA, Salt DE (2006) A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata. Plant Physiol 141:1544–1554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fendorf S, Michael HA, van Geen A (2010) Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328:1123–1127

    CAS  PubMed  Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369

    CAS  PubMed  Google Scholar 

  • Ghori Z, Iftikhar H, Bhatti MF, Nasar-um-Minullah, Sharma I, Kazi AG et al (2016) Phytoextraction: the use of plants to remove heavy metals from soil, In: Ahmad P (ed) Plant metal interaction: emerging remediation techniques, Elsevier, New York, pp 385–409

    Google Scholar 

  • González E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005) Phosphate Transporter Traffic Facilitator1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17:3500–3512

    PubMed  PubMed Central  Google Scholar 

  • Grispen VMJ, Irtelli B, Hakvoorta HJ, Vooijs R et al (2009) Expression of the Arabidopsis metallothionein 2b enhances arsenite sensitivity and root to shoot translocation in tobacco. Environ Exp Bot 66:69–73

    CAS  Google Scholar 

  • Guo J, Xu W, Ma M (2012) The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. J Hazard Mater 200:309–313

    Google Scholar 

  • He Z, Yan H, Chen Y, Shen H, Xu W, Zhang H, Shi L, Zhu Y-G, Ma M (2016) An aquaporin PvTIP4;1 from Pteris vittata may mediate arsenite uptake. New Phytol 209:746–761

    CAS  PubMed  Google Scholar 

  • Huang K, Chen C, Shen QR, Rosen BP, Zhao FJ (2015) Genetically engineering Bacillus subtilis with a heat-resistant arsenite methyltransferase for bioremediation of arsenic-contaminated organic waste. Appl Environ Microbiol 81:6718–6724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang K, Chen C, Zhang J, Tang Z, Shen Q, Rosen BP, Zhao FJ (2016) Efficient arsenic methylation and volatilization mediated by a novel bacterium from an arsenic-contaminated paddy soil. Environ Sci Technol 50:6389–6396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Indriolo E, Na GN, Ellis D, Salt DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones FT (2007) A broad view of arsenic. Poult Sci 86:2–14

    CAS  PubMed  Google Scholar 

  • Kamiya T, Tanaka M, Mitani N, Ma JF, Maeshima M, Fujiwara T (2009) NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem 284:2114–2120

    CAS  PubMed  Google Scholar 

  • Karami A, Shamsuddin ZH (2010) Phytoremediation of heavy metals with several efficiency enhancer methods. Afr J Biotechnol 9:3689–3698

    CAS  Google Scholar 

  • Khare R, Kumar S, Shukla T, Ranjan A, Trivedi PK (2017) Differential sulphur assimilation mechanism regulates response of Arabidopsis thaliana natural variation towards arsenic stress under limiting sulphur condition. J Hazard Mater 337:198–207

    CAS  PubMed  Google Scholar 

  • Kumar S, Dubey RS, Tripathi RD, Chakrabarty D, Trivedi PK (2015a) Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ Int 74:221–230

    CAS  PubMed  Google Scholar 

  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK (2015b) Comprehensive analysis of regulatory elements of the promoters of rice sulfate transporter gene family and functional characterization of OsSul1;1 promoter under different metal stress. Plant Signal Behav 10:990843

    Google Scholar 

  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Trivedi PK (2011) Differential expression and alternative splicing of rice sulphate transporter family members regulate sulphur status during plant growth, development and stress conditions. Funct Integr Genomics 11:259–273

    CAS  PubMed  Google Scholar 

  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK (2013a) Differential expression of rice Lambda class GST gene family members during plant growth, development, and in response to stress conditions. Plant Mol Biol Rep 31:569–580

    CAS  Google Scholar 

  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK (2013b) Expression of a rice Lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses. J Hazard Mater 248–249:228–237

    PubMed  Google Scholar 

  • Kumar S, Trivedi PK (2016a) Heavy metal signaling in plants. In: Azooz MM (ed) Plant metal interaction: emerging remediation techniques. Elsevier, Amsterdam, pp 585–603

    Google Scholar 

  • Kumar S, Trivedi PK (2016b) Transcriptome modulation in rice under abiotic stress. In: Azooz MM, Ahmad P (eds) Plant environment interaction: responses and approaches to mitigate stress. Wiley, New York, pp 70–83

    Google Scholar 

  • Kumar S, Verma S, Trivedi PK (2017) Involvement of small RNAs in phosphorus and sulfur sensing, signaling and stress: current update. Front Plant Sci 8:e285

    Google Scholar 

  • Le Blanc MS, Lima A, Montello P, Kim T et al (2011) Enhanced arsenic tolerance of transgenic eastern cottonwood plants expressing gamma-glutamylcysteine synthetase. Int J Phytoremediation 13:657–673

    Google Scholar 

  • Li R-Y, Ago Y, Liu W-J et al (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Fu J-W, Tang N, da Silva EB et al (2017) Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulator Pteris vittata. Environ Pollut 226:212–218

    CAS  PubMed  Google Scholar 

  • Liu W, Schat H, Bliek M, Chen Y. Mcgrath SP, George G, E Salt DE, Zhao FJ (2012) Knocking out ACR2 does not affect Arsenic redox status in Arabidopsis thaliana: Implications for As detoxification and accumulation in plants. PloS one 7:e42408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Logoteta B, Xu XY, Macnair MR, McGrath SP, Zhao FJ (2009) Arsenite efflux is not enhanced in the arsenate-tolerant phenotype of Holcus lanatus. New Phytol 183:340–348

    CAS  PubMed  Google Scholar 

  • Lomax C, Liu WJ, Wu L, Xue K, Xiong J, Zhou J, McGrath SP, Meharg AA, Miller AJ, Zhao FJ (2012) Methylated arsenic species in plants originate from soil microorganisms. New Phytol 193:665–672

    CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 105:9931–9935

    CAS  PubMed  Google Scholar 

  • McGuinness M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6:2226–2247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meharg AA, Macnair MR (1992) Suppression of the high-affinity phosphate-uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524

    CAS  Google Scholar 

  • Meng XY, Qin J, Wang LH, Duan GL, Sun GX, Wu HL, Chu CC, Ling HQ, Rosen BP, Zhu YG (2011) Arsenic biotransformation and volatilization in transgenic rice. New Phytol 191:49–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mosa KA, Kumar K, Chhikara S, Mcdermott J, Liu Z, Musante C, White JC, Dhankher OP (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21:1265–1277

    CAS  PubMed  Google Scholar 

  • Mudge SR, Rae AL, Diatloff E, Smith FW (2002) Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J 31:341–353

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay R, Shi J, Rosen BP (2000) Purification and characterization of Acr2p, the Saccharomyces cerevisiae arsenate reductase. J Biol Chem 275:21149–21157

    CAS  PubMed  Google Scholar 

  • Neumann RB, Ashfaque KN, Badruzzaman ABM, Ali MA, Shoemaker JK, Harvey CF (2010) Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nat Geosci 3:46–52

    CAS  Google Scholar 

  • Newcombe C, Raab A, Williams PN, Deacon C, Haris PI, Meharg AA, Feldmann J (2010) Accumulation or production of arsenobetaine in humans? J Environ Monit 12:832–837

    CAS  PubMed  Google Scholar 

  • Nocito FF, Lancilli C, Crema B, Fourcroy P, Davidian J-C, Sacchi GA (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiol 141:1138–1148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Norton GJ, Lou-Hing DE, Meharg AA, Price AH (2008) Rice–arsenate interactions in hydroponics: whole genome transcriptional analysis. J Exp Bot 59:2267–2276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99:13324–13329

    CAS  PubMed  Google Scholar 

  • Paulose B, Kandasamy S, Dhankher OP (2010) Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification. BMC Plant Biol 10:e108

    Google Scholar 

  • Pickering IJ, Prince RC, George MJ, Smith RD et al (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–1178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci USA 103:2075–2080

    CAS  PubMed  Google Scholar 

  • Raab A, Williams PN, Meharg A, Feldmann J (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4:197–203

    CAS  Google Scholar 

  • Rai A, Tripathi P, Dwivedi S, Dubey S, Shri M, Kumar S, Tripathi PK, Dave R, Kumar A, Singh R, Adhikari B, Bag M, Tripathi RD, Trivedi PK, Chakrabarty D, Tuli R (2011) Arsenic tolerances in rice (Oryza sativa) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and antioxidant system. Chemosphere 82:986–995

    CAS  PubMed  Google Scholar 

  • Rodriguez-Lado L, Sun G, Berg M, Zhang Q, Xue H, Zheng Q, Johnson CA (2013) Groundwater arsenic contamination throughout China. Science 341:866–868

    CAS  PubMed  Google Scholar 

  • Sánchez-Bermejo E, Castrillo G, Del Llano B, Navarro C, Zarco FS et al (2014) Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana. Nat Commun 5:e4617

    Google Scholar 

  • Santra SC, Samal AC, Bhattacharya P, Banerjee S, Biswas A, Majumdar J (2013) Arsenic in food chain and community health risk: a study in Gangetic West Bengal. Procedia Environ Sci 18:2–13

    CAS  Google Scholar 

  • Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:2381–2392

    CAS  PubMed  Google Scholar 

  • Schulz H, Haertling S, Tanneberg H (2008) The identification and quantification of arsenic-induced phytochelatins: comparison between plants with varying As sensitivities. Plant Soil 303:275–287

    CAS  Google Scholar 

  • Sharma D, Tiwari M, Lakhwani D, Tripathi RD, Trivedi PK (2015) Differential expression of microRNAs by arsenate and arsenite stress in natural accessions of rice. Metallomics 7:174–187

    CAS  PubMed  Google Scholar 

  • Shi S, Wang T, Chen Z, Tang Z, Wu Z, Salt DE et al (2016) OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiol 172:1708–1719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin H, Shin HS, Gary R, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642

    CAS  PubMed  Google Scholar 

  • Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, Tuli R (2009) Effect of arsenic on growth, oxidative stress and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72:1102–1110

    CAS  PubMed  Google Scholar 

  • Shukla D, Kesari R, Mishra S, Dwivedi S, Tripathi RD, Nath P, Trivedi PK (2012) Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. Plant Cell Rep 31:1687–1699

    CAS  PubMed  Google Scholar 

  • Shukla D, Tiwari M, Tripathi RD, Nath P, Trivedi PK (2013) Synthetic phytochelatins complement a phytochelatin-deficient Arabidopsis mutant and enhance the accumulation of heavy metal(loid)s. Biochem Biophys Res Commun 434:664–669

    CAS  PubMed  Google Scholar 

  • Shukla T, Kumar S, Khare R, Tripathi RD, Trivedi PK (2015) Natural variations in expression of regulatory and detoxification related genes under limiting phosphate and arsenate stress in Arabidopsis thaliana. Front Plant Sci 6:e898

    Google Scholar 

  • Srivastava S, Mishra S, Tripathi R, Dwivedi S, Trivedi P, Tandon P (2007) Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (Lf) Royle. Environ Sci Technol 41:2930–2936

    CAS  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2009) Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J Exp Bot 60:3419–3431

    CAS  PubMed  Google Scholar 

  • Song WY, Park J, Mendoza-Cozatl DG, Suter-Grotemeyer M et al (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci USA 107:21187–21192

    CAS  PubMed  Google Scholar 

  • Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M et al (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci USA 111:15699–15704

    CAS  PubMed  Google Scholar 

  • Sundaram S, Wu S, Ma LQ, Rathinasabapathi B (2009) Expression of a Pteris vittata glutaredoxin PvGRX5 in transgenic Arabidopsis thaliana increases plant arsenic tolerance and decreases arsenic accumulation in the leaves. Plant Cell Environ 32:851–858

    CAS  Google Scholar 

  • Tiwari M, Sharma D, Dwivedi S, Singh M, Tripathi RD, Trivedi PK (2014) Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant Cell Environ 37:140–152

    CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotech 25:158–165

    CAS  Google Scholar 

  • Tripathi RD, Tripathi P, Dwivedi S, Dubey S, Chatterjee S et al (2012) Arsenomics: omics of arsenic metabolism in plants. Front Plant Sci 3:e275

    Google Scholar 

  • Tuli R, Chakrabarty D, Trivedi PK, Tripathi RD (2010) Recent advances in arsenic accumulation and metabolism in rice. Mol Breed 26:307–323

    CAS  Google Scholar 

  • Vahter M (2002) Mechanisms of arsenic biotransformation. Toxicology 181:211–217

    PubMed  Google Scholar 

  • Wang J, Zhao F-J, Meharg AA, Raab A et al (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with Phosphate, and Arsenic speciation. Plant Physiol 130:1552–1561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Zhang W, Mao C, Xu G, Zhao FJ (2016) The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. J Exp Bot 67:6051–6059

    CAS  PubMed  Google Scholar 

  • Xu J, Shi S, Wang L, Tang Z, Lv T et al (2017) OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytol 215:1090–1101

    CAS  PubMed  Google Scholar 

  • Xu W, Dai W, Yan H, Li S, Shen H et al (2015) Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8:722–733

    CAS  PubMed  Google Scholar 

  • Yu LJ, Luo YF, Liao B, Xie LJ, Chen L, Xiao S, Li JT, Hu SN, Shu WS (2012) Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol 195:97–112

    CAS  Google Scholar 

  • Zanella L, Fattorini L, Brunetti P, Roccotiello E et al (2016) Overexpression of AtPCS1 in tobacco increases arsenic and arsenic plus cadmium accumulation and detoxification. Planta 243:605–622

    CAS  PubMed  Google Scholar 

  • Zhang J, Xu Y, Cao T, Chen J, Rosen BP, Zhao FJ (2017) Arsenic methylation by a genetically engineered Rhizobium-legume symbiont. Plant Soil 416:259–269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Cai Y, Downum KR, Ma LQ (2004) Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern). Environ Pollut 131:337–345

    CAS  PubMed  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Council of Scientific and Industrial Research (CSIR), New Delhi. SK thankfully acknowledges the Department of Science and Technology (DST), Government of India, New Delhi for the DST-INSPIRE Faculty Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabodh Kumar Trivedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Trivedi, P.K. (2019). Genomics of Arsenic Stress Response in Plants. In: Rajpal, V., Sehgal, D., Kumar, A., Raina, S. (eds) Genetic Enhancement of Crops for Tolerance to Abiotic Stress: Mechanisms and Approaches, Vol. I. Sustainable Development and Biodiversity, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-91956-0_10

Download citation

Publish with us

Policies and ethics