Skip to main content

Investigation into the Breakdown of Continuum Fracture Mechanics at the Nanoscale: Synthesis of Recent Results on Silicon

  • Conference paper
  • First Online:
Proceedings of the First International Conference on Theoretical, Applied and Experimental Mechanics (ICTAEM 2018)

Part of the book series: Structural Integrity ((STIN,volume 5))

Abstract

The present contribution reviews some recent results on the experimental characterisation of the nanoscale fracture toughness of silicon by using pre-cracked specimens and alternatively the theory of critical distances (TCD). Later, the results are discussed to provide the ultimate dimensional limit of the continuum fracture mechanics at the nanoscale in the light of sophisticated discrete atomic simulations at the onset of brittle fracture. The results show that the fracture toughness of Si is independent of the scale, crystal orientation and the singular stress field length. This confirms the atomistic nature of the brittle fracture. Moreover, the continuum fracture mechanics fails below a singular stress field approaching 2 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liebowitz, H.: Fracture. Academic Press, New York (1968)

    MATH  Google Scholar 

  2. Kitamura, T., Sumigawa, T., Hirakata, H., Shimada, T.: Fracture Nanomechanics, 2nd edn. Pan Stanford Publishing, Singapore (2016)

    Google Scholar 

  3. Gallo, P., Sumigawa, T., Kitamura, T., Berto, F.: Evaluation of the strain energy density control volume for a nanoscale singular stress field. Fatigue Fract. Eng. Mater. Struct. 39, 1557–1564 (2016). https://doi.org/10.1111/ffe.12468

    Article  Google Scholar 

  4. Huang, K., Shimada, T., Ozaki, N., Hagiwara, Y., Sumigawa, T., Guo, L., Kitamura, T.: A unified and universal Griffith-based criterion for brittle fracture. Int. J. Solids Struct. 128, 67–72 (2017). https://doi.org/10.1016/j.ijsolstr.2017.08.018

    Article  Google Scholar 

  5. Sumigawa, T., Shimada, T., Tanaka, S., Unno, H., Ozaki, N., Ashida, S., Kitamura, T.: Griffith criterion for nanoscale stress singularity in brittle silicon. ACS Nano 11, 6271–6276 (2017). https://doi.org/10.1021/acsnano.7b02493

    Article  Google Scholar 

  6. Sumigawa, T., Ashida, S., Tanaka, S., Sanada, K., Kitamura, T.: Fracture toughness of silicon in nanometer-scale singular stress field. Eng. Fract. Mech. 150, 161–167 (2015). https://doi.org/10.1016/j.engfracmech.2015.05.054

    Article  Google Scholar 

  7. Gallo, P., Yan, Y., Sumigawa, T., Kitamura, T.: Fracture behavior of nanoscale notched silicon beams investigated by the theory of critical distances. Adv. Theory Simul., 1700006 (2017). https://doi.org/10.1002/adts.201700006

    Article  Google Scholar 

  8. Taylor, D.: The Theory of Critical Distances: A New Perspective in Fracture Mechanics. Elsevier, Oxford (2007)

    Google Scholar 

  9. Shimada, T., Ouchi, K., Chihara, Y., Kitamura, T.: Breakdown of continuum fracture mechanics at the nanoscale. Sci. Rep. 5, 8596 (2015). https://doi.org/10.1038/srep08596

    Article  Google Scholar 

  10. Susmel, L., Taylor, D.: The theory of critical distances as an alternative experimental strategy for the determination of KIc and ∆Kth. Eng. Fract. Mech. 77, 1492–1501 (2010). https://doi.org/10.1016/j.engfracmech.2010.04.016

    Article  Google Scholar 

  11. Taylor, D.: The theory of critical distances: a link to micromechanisms. Theor. Appl. Fract. Mech. 90, 228–233 (2017). https://doi.org/10.1016/j.tafmec.2017.05.018

    Article  Google Scholar 

  12. Kitamura, T., Umeno, Y., Fushino, R.: Instability criterion of inhomogeneous atomic system. Mater. Sci. Eng. A 379, 229233 (2004). https://doi.org/10.1016/j.msea.2004.02.061

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (JSPS) International Research Fellow program (Grant No. 16F16366); JSPS KAKENHI (Grant No. JP15H02210, JP26630009, and JP25000012); JSPS Grant-in-Aid for Specially Promoted Research (Grant No. 25000012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Gallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gallo, P., Sumigawa, T., Shimada, T., Yan, Y., Kitamura, T. (2019). Investigation into the Breakdown of Continuum Fracture Mechanics at the Nanoscale: Synthesis of Recent Results on Silicon. In: Gdoutos, E. (eds) Proceedings of the First International Conference on Theoretical, Applied and Experimental Mechanics. ICTAEM 2018. Structural Integrity, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-91989-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91989-8_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91988-1

  • Online ISBN: 978-3-319-91989-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics