Skip to main content

From Static to Dynamic Tag Population Estimation: An Extended Kalman Filter Perspective

  • Chapter
  • First Online:
Tag Counting and Monitoring in Large-Scale RFID Systems

Abstract

Tag population estimation has recently attracted significant research attention due to its paramount importance on a variety of radio frequency identification (RFID) applications. However, the existing estimation mechanisms are proposed for the static case where tag population remains constant, thus leaving the more challenging dynamic case unaddressed. This chapter introduces a generic framework of stable and accurate estimation schemes based on Kalman filter for both static and dynamic RFID systems. We first model the system dynamics as discrete stochastic processes and leverage the techniques in extended Kalman filter (EKF) and cumulative sum control chart (CUSUM) to estimate tag population for static/dynamic systems. By employing Lyapunov drift analysis, we characterise the performance of the proposed framework in terms of estimation accuracy and convergence speed by deriving the closed-form conditions on the design parameters. The relative estimation error is bounded and converged to zero at exponential rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The outputs of the hash function have a uniform distribution such that the tag can choose any slot within the round with the equal probability.

  2. 2.

    For two variables X, Y, asymptotic notation X =  Θ(Y ) implies that there exist positives c 1, c 2 and x 0 such that for ∀X > x 0, it follows that c 1 X ≤ Y ≤ c 2 X.

References

  1. RFID Journal, DoD releases final RFID policy. [Online]

    Google Scholar 

  2. RFID Journal, DoD reaffirms its RFID goals. [Online]

    Google Scholar 

  3. C.-H. Lee, C.-W. Chung, Efficient storage scheme and query processing for supply chain management using RFID, in ACM SIGMOD (ACM, New York, 2008), pp. 291–302

    Google Scholar 

  4. L.M. Ni, D. Zhang, M.R. Souryal, RFID-based localization and tracking technologies. IEEE Wirel. Commun. 18(2), 45–51 (2011)

    Google Scholar 

  5. P. Yang, W. Wu, M. Moniri, C.C. Chibelushi, Efficient object localization using sparsely distributed passive RFID tags. IEEE Trans. Ind. Electron. 60(12), 5914–5924 (2013)

    Google Scholar 

  6. RFID Journal, Wal-Mart begins RFID process changes. [Online]

    Google Scholar 

  7. M. Kodialam, T. Nandagopal, W.C. Lau, Anonymous tracking using RFID tags, in IEEE INFOCOM (IEEE, Piscataway, 2007), pp. 1217–1225

    Google Scholar 

  8. T. Li, S. Wu, S. Chen, M. Yang, Energy efficient algorithms for the RFID estimation problem, in IEEE INFOCOM (IEEE, Piscataway, 2010), pp. 1–9

    Google Scholar 

  9. C. Qian, H. Ngan, Y. Liu, L. M. Ni, Cardinality estimation for large-scale RFID systems. IEEE Trans. Parallel Distrib. Syst. 22(9), 1441–1454 (2011)

    Google Scholar 

  10. M. Shahzad, A.X. Liu, Every bit counts: fast and scalable RFID estimation, in ACM Mobicom (2012), pp. 365–376

    Google Scholar 

  11. Y. Zheng, M. Li, Zoe: fast cardinality estimation for large-scale RFID systems, in IEEE INFOCOM (IEEE, Piscataway, 2013), pp. 908–916

    Google Scholar 

  12. EPCglobal Inc., Radio-frequency identity protocols class-1 generation-2 UHF RFID protocol for communications at 860 mhz - 960 mhz version 1.0.9 [Online]

    Google Scholar 

  13. Y. Song, J.W. Grizzle, The extended Kalman filter as a local asymptotic observer for nonlinear discrete-time systems, in American Control Conference (IEEE, Piscataway, 1992), pp. 3365–3369

    Google Scholar 

  14. M. Kodialam, T. Nandagopal, Fast and reliable estimation schemes in RFID systems, in ACM Mobicom (ACM, New York, 2006), pp. 322–333

    Google Scholar 

  15. H. Han, B. Sheng, C.C. Tan, Q. Li, W. Mao, S. Lu, Counting RFID tags efficiently and anonymously, in IEEE INFOCOM (IEEE, Piscataway, 2010), pp. 1–9

    Google Scholar 

  16. V. Sarangan, M. Devarapalli, S. Radhakrishnan, A framework for fast RFID tag reading in static and mobile environments. Comput. Netw. 52(5), 1058–1073 (2008)

    Google Scholar 

  17. L. Xie, B. Sheng, C.C. Tan, H. Han, Q. Li, D. Chen, Efficient tag identification in mobile RFID systems, in IEEE INFOCOM (IEEE, Piscataway, 2010), pp. 1–9

    Google Scholar 

  18. Q. Xiao, B. Xiao, S. Chen, Differential estimation in dynamic RFID systems, in IEEE INFOCOM (IEEE, Piscataway, 2013), pp. 295–299

    Google Scholar 

  19. Q. Xiao, M. Chen, S. Chen, Y. Zhou, Temporally or spatially dispersed joint RFID estimation using snapshots of variable lengths, in ACM MobiHoc (ACM, New York, 2015), pp. 247–256

    Google Scholar 

  20. T. Morozan, Boundedness properties for stochastic systems, in Stability of Stochastic Dynamical Systems (Springer, Berlin, 1972), pp. 21–34

    Google Scholar 

  21. T.-J. Tarn, Y. Rasis, Observers for nonlinear stochastic systems. IEEE Trans. Autom. Control 21(4), 441–448 (1976)

    Google Scholar 

  22. K. Reif, S. Günther, E. Yaz Sr., R. Unbehauen, Stochastic stability of the discrete-time extended Kalman filter. IEEE Trans. Autom. Control 44(4), 714–728 (1999)

    Google Scholar 

  23. M.B. Rhudy, Y. Gu, Online stochastic convergence analysis of the Kalman filter. Int. J. Stoch. Anal. 2013, 240295 (2013)

    Google Scholar 

  24. K. Finkenzelle, RFID Handbook: Radio Frequency Identification Fundamentals and Applications (Wiley, Chichester, 2000)

    Google Scholar 

  25. V.F. Kolchin, B.A. Sevastyanov, V.P. Chistyakov, Random Allocation (Wiley, New York, 1978)

    Google Scholar 

  26. F. Gustafsson, F. Gustafsson, Adaptive Filtering and Change Detection (Wiley, New York, 2000)

    Google Scholar 

  27. E. Brodsky, B.S. Darkhovsky, Nonparametric Methods in Change Point Problems (Springer Science & Business Media, New York, 1993)

    Google Scholar 

  28. M. Basseville, I.V. Nikiforov, et al., Detection of Abrupt Changes: Theory and Application (Prentice Hall, Englewood Cliffs, 1993)

    Google Scholar 

  29. F. Spiring, Introduction to statistical quality control. Technometrics 49(1), 108–109 (2007)

    Google Scholar 

  30. M. Chen, W. Luo, Z. Mo, S. Chen, Y. Fang, An efficient tag search protocol in large-scale RFID systems with noisy channel, in IEEE/ACM TON (2015)

    Google Scholar 

  31. M. Shahzad, A.X. Liu, Expecting the unexpected: fast and reliable detection of missing RFID tags in the wild, in IEEE INFOCOM (2015), pp. 1939–1947

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, J., Chen, L. (2019). From Static to Dynamic Tag Population Estimation: An Extended Kalman Filter Perspective. In: Tag Counting and Monitoring in Large-Scale RFID Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-91992-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91992-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91991-1

  • Online ISBN: 978-3-319-91992-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics