Skip to main content

Abstract

The Lifting Scheme introduced in (Sweldens, Appl. Comput. Harmon. Anal. 3(2), 186–200 (1996) and Sweldens, SIAM J. Math. Anal. 29(2), 511–546 (1997).) [3, 4] is a method that constructs bi-orthogonal wavelet transforms of signals and provides their efficient implementation. The main feature of the lifting scheme is that all the constructions are derived directly in the spatial domain and therefore can be custom designed to more general and irregular settings such as non-uniformly spaced data samples and bounded intervals. In this chapter, we outline the lifting scheme and describe how to use the local quasi-interpolating splines, introduced in Chap. 6, for the construction of wavelet transforms of non-equally sampled signals and real-time implementation of signals’ transforms in situation when samples arrive one after another at random times. On arrival of new samples, only a couple of adjacent transform coefficients are updated in a way that no boundary effects occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that for cubic splines, the nodes’ grid t coincides with the sampling grid g.

References

  1. A.Z. Averbuch, P. Neittaanmäki, V.A. Zheludev, Spline and Spline Wavelet Methods with Applications to Signal and Image Processing, Non-periodic Splines, vol II (Springer, Berlin, 2015)

    MATH  Google Scholar 

  2. C.M. Brislawn, Classification of nonexpansive symmetric extension transforms for multirate filter banks. Appl. Comput. Harmon. Anal. 3(4), 337–357 (1996)

    Article  Google Scholar 

  3. W. Sweldens, The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3(2), 186–200 (1996)

    Article  MathSciNet  Google Scholar 

  4. W. Sweldens, The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511–546 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Z. Averbuch .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Averbuch, A.Z., Neittaanmäki, P., Zheludev, V.A. (2019). Spline-Based Wavelet Transforms. In: Spline and Spline Wavelet Methods with Applications to Signal and Image Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-92123-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92123-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92122-8

  • Online ISBN: 978-3-319-92123-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics