Skip to main content

Global Biomass Supply and Sustainable Development

  • Chapter
  • First Online:
Human and Environmental Security in the Era of Global Risks

Abstract

Biomass – in form of nutritional energy and energy-rich material – is not accounted for in conventional energy statistics. It constitutes a neglected energy carrier although it has ever since provided the basis for human life and activity. In this work, we assess current global draw on the earth’s biomass resources by examining the indicators ‘Ecological Footprint’ and ‘Human Appropriation of Net Primary Production’, quantifying humankind’s biomass demand and the earth’s biomass supply. It is revealed that humankind appropriates about 20–30% of the ecosystem’s supplying capacity. Other definitions partly suggest lower and higher values. We then use the energetic metabolism accounting concept to acquire data on biomass supply for the past centuries to complement conventional energy statistics. It is disclosed that the actual energy supply to humankind is about twice as high as conventional energy statistics essentially suggest. Depending on the approach taken, current biomass supply amounts to 10–12 TW or to 14–15 TW. Against the results yielded, ideas like substituting fossil resources with biomass in the future for the provision of energy services to mitigate the current energy and climate crisis might be controversial to the achievement of sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.footprintnetwork.org/en/index.php/GFN/page/at_a_glance/

  2. 2.

    It should be noted here that carbon dioxide emissions are so far the only waste product included in national footprint accounts (Ewing et al. 2010:14).

  3. 3.

    The term ‘metabolism’ refers to the functioning of living organisms, the internal (chemical and physical) processes of energy-rich material intake to enable sustenance and reproduction as well as output in form of entropy and waste (Ayres 1994:xi/3). Analogous to the biological notion, the socioeconomic metabolism approach examines these processes within certain human societies and between such societies and their natural environment.

  4. 4.

    Pg C/yr. = 1015 g carbon per year. For better assessment of this chapter’s contents as well as on grounds of uniformity, all original units used in various studies are converted into the unit of power, namely Watt (W) (1 W = 1 J/s; TW = 1012 W). Conversions are undertaken using the following factor: 1 kg dry matter biomass equals 0.5 kg carbon or 18.5 MJ (Haberl et al. 2007b:6). All figures stipulated hereafter derive from exact conversions and are only as precise as the original data.

  5. 5.

    NPPact of the entire ecosystem (terrestrial and aquatic) is quantified at a minimum of 94 TW (Whittaker and Likens 1973:358) to a maximum of 130 TW (Vitousek et al. 1986:369).

  6. 6.

    Other estimates on the hunter-gatherer’s biomass supply fall into this range and thus seem to validate this spectrum (compare Boyden 1992:80; Malanima 2010:6–7; Cook 1971:136).

  7. 7.

    Again, other estimates on the agricultural societies’ biomass supply seem to validate this range (compare for instance Kumar and Ramakrishnan 1990:331–334).

  8. 8.

    The higher limit of 3500 W also accounts for the biomass supply to more consumption-oriented societies, like Northern America, having a per capita biomass supply of ca. 3227 W (Krausmann et al. 2008:476–477).

References

  • Ayres RU (1994) Industrial metabolism: theory and policy. In: Ayres RU, Simonis UE (eds) Industrial metabolism. UN University Press, Tokyo et al., pp 3–20

    Google Scholar 

  • Beran L, Dyckhoff H (2012) Biomasse als industrieller Faktor einer nachhaltigen Weltwirtschaft? In: Corsten H, Roth S (eds) Nachhaltigkeit: Unternehmerisches Handeln in globaler Verantwortung. Wiesbaden, Gabler Verlag, pp 171–190

    Chapter  Google Scholar 

  • Boyden S (1992) Biohistory: The Interplay between Human Society and The Biosphere. UNESCO Man and Biosphere Series, vol 8. UNESCO and The Parthenon Publishing Group, Paris

    Google Scholar 

  • BP (2011) BP statistical review of world energy June 2011. [WWW] <URL: http://www.bp.com/sectionbodycopy.do?categoryId=7500andcontentId=7068481> [Accessed 16 August 2011]

  • Braidwood RJ, Reed CA (1957) The achievement and early consequences of food-production: A consideration of the archeological and natural-historical evidence. Cold Spring Harb Symp Quant Biol 22:17–31

    Article  Google Scholar 

  • Campbell NA, Reece JB (2003) Biologie, Sixth edn. Spektrum Akademischer Verlag, Heidelberg/Bonn

    Google Scholar 

  • Common M (1995) Sustainability and policy: Limits to economics. Cambridge University Press, Cambridge, NY/Melbourne

    Google Scholar 

  • Cook E (1971) The flow of energy in an industrial society. Sci Am 224(3):135–144

    Google Scholar 

  • Deevey ES Jr (1960) The human population. Scientific American, CCIII, pp 195–204

    Article  Google Scholar 

  • Dyckhoff H, Beran L, Renner T (2010) Primary energy supply and economic wealth. In: Brebbia CA, Jovanovic N, Tiezzi E (eds) Management of natural resources, sustainable development and ecological hazards II. WIT Press, Southampton, pp 271–282

    Google Scholar 

  • Dyke JG, Gans F, Kleidon A (2011) Towards understanding how surface life can affect interior geological processes: A non-equilibrium thermodynamics approach. Earth Syst Dynam 2:139–160

    Article  Google Scholar 

  • Ewing B, Moore D, Goldfinger S, Oursler A, Reed A, Wackernagel M (2010) The ecological footprint atlas 2010. Global Footprint Network, Oakland

    Google Scholar 

  • Fischer-Kowalski M, Haberl H (1997) Tons, joules, and money: modes of production and their sustainability problems. Soc Nat Resour 10(1):61–85

    Article  Google Scholar 

  • GFN (2012) Global Footprint Network. [WWW] <URL: http://www.footprintnetwork.org/en/index.php/GFN/> [Accessed 5 Sept 2012]

  • Grünbühel CM, Schandl H, Winiwarter V (1999) Agrarische Produktion als Interaktion von Natur und Gesellschaft: Fallstudie Sang Saeng. Interuniversitäres Institut für interdisziplinäre Forschung und Fortbildung, Wien

    Google Scholar 

  • Haberl H (1997) Human appropriation of net primary production as an environmental indicator: implications for sustainable development. Ambio 26(3):143–146

    Google Scholar 

  • Haberl H (2000) Energetischer Stoffwechsel und nachhaltige Entwicklung. Natur und Kultur 1(1):32–47

    Google Scholar 

  • Haberl H (2001) The energetic metabolism of societies. Part I: accounting concepts. J Ind Ecol 5(1):11–33

    Article  Google Scholar 

  • Haberl H (2002) The energetic metabolism of societies. Part II: empirical examples. J Ind Ecol 5(2):71–88

    Article  Google Scholar 

  • Haberl H (2006) The global socioeconomic energetic metabolism as a sustainability problem. Energy 31:87–99

    Article  Google Scholar 

  • Haberl H, Wackernagel M, Krausmann F, Erb K-H, Monfreda C (2004) Ecological footprints and human appropriation of net primary production: a comparison. Land Use Policy 21:279–288

    Article  Google Scholar 

  • Haberl H, Erb K-H, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007a) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci USA 104(31):12942–12947

    Article  CAS  Google Scholar 

  • Haberl H, Erb K-H, Krausmann F (2007b) Human appropriation of net primary production (HANPP). Internet Encyclopaedia of Ecological Economics. [WWW] <URL: www.ecoeco.org/pdf/2007_march_hanpp.pdf> [Accessed 13 Oct 2011]

  • Herendeen RA (2000) Ecological footprint is a vivid indicator of indirect effects. Ecol Econ 32:357–358

    Article  Google Scholar 

  • Imhoff ML, Bounoua L, Ricketts T, Loucks C, Harriss R, Lawrence WT (2004) Global patterns in human consumption of net primary production. Nature 429:870–873

    Article  CAS  Google Scholar 

  • Kapitza SP (2006) Global population blow-up and after. The demographic revolution and information society. Global Marshall Plan Initiative, Hamburg

    Google Scholar 

  • Kitzes J, Peller A, Goldfinger S, Wackernagel M (2007) Current methods for calculating national ecological footprint accounts. Science for Environment and Sustainable Society 4(1):1–9

    Google Scholar 

  • Kleidon A (2012) How does the earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet? Philos Trans R Soc 370:1012–1040

    Article  CAS  Google Scholar 

  • Krausmann F, Haberl H (2000) From wood and rye to paper and beef: changes in the socioeconomic biomass and energy metabolism during 200 years of industrial modernisation in Austria. Third international conference of the European Society for Ecological Economics (ESEE) 3–6 May, Vienna

    Google Scholar 

  • Krausmann F, Haberl H (2002) The process of industrialization from the perspective of energetic metabolism: Socioeconomic energy flows in Austria 1830–1995. Ecol Econ 41:177–201

    Article  Google Scholar 

  • Krausmann F, Erb K-H, Gingrich S, Lauk C, Haberl H (2008) Global patterns of socioeconomic biomass flows in the year 2000: a comprehensive assessment of supply, consumption and constraints. Ecol Econ 65(3):471–487

    Article  Google Scholar 

  • Kumar A, Ramakrishnan PS (1990) Energy flow through an Apatani village ecosystem of Arunachal Pradesh in Northeast India. Hum Ecol 18(3):315–336

    Article  Google Scholar 

  • Lee RB, Hitchcock RK (2001) African hunter-gatherers: Survival, history, and the politics of identity. Afr Stud Monogr Suppl 26:257–280

    Google Scholar 

  • Maddison A (2010) Statistics on world population, GDP and per capita GDP, 1-2008 AD. [WWW] <URL: http://www.ggdc.net/MADDISON/oriindex.htm> [Accessed 16 Aug 2011]

  • Malanima P (2010) Energy in history. In: UNESCO (ed) Encyclopedia of Life Support Systems. EOLSS Publishers, UK

    Google Scholar 

  • McEvedy C, Jones R (1978) Atlas of world population history. Penguin Books, Harmondsworth, Middlesex

    Google Scholar 

  • Murdock GP (1975) The current status of the world’s hunting and gathering peoples. In: Lee RB, DeVore I (eds) Man the Hunter, Fifth edn. Aldine, Chicago, pp 13–20

    Google Scholar 

  • Netting RM (1981) Balancing on an Alp: Ecological change and continuity in a Swiss mountain community. Cambridge University Press, Cambridge

    Google Scholar 

  • OECD (2011) Statistics from A to Z: Beta version. [WWW] <URL: http://www.oecd.org/document/0,3746,en_2649201185_46462759_1_1_1_1,00.html> [Accessed 15 Aug 2011]

  • Paeger J (2011) Eine kleine Geschichte des menschlichen Energieverbrauchs. [WWW] <URL: http://www.oekosystem-erde.de/html/energiegeschichte.html> [Accessed 28 Mar 2011]

  • Rojstaczer S, Sterling SM, Moore NJ (2001) Human appropriation of photosynthesis products. Science 294:2549–2552

    Article  CAS  Google Scholar 

  • Sieferle RP (1997) Rückblick auf die Natur: Eine Geschichte des Menschen und seiner Umwelt. Luchterhand, München

    Google Scholar 

  • Smil V (1991) General energetics. John Wiley and Sons, New York

    Google Scholar 

  • Survival International (2011) Die Yanomami. [WWW] <URL: http://www.survivalinternational.de/indigene/yanomami#main> [Accessed 7 Jan 2011]

  • UN (1952) World energy supplies in selected years, 1929–1950. UN Publications, New York

    Google Scholar 

  • UN-HABITAT (2010) Slum population projection 1990–2020. [WWW]<URL: http://ww2.un-habitat.org/programmes/guo/documents/Table4.pdf> [Accessed 21 Aug 2010]

  • USBC (2011) International data base: Total mid-year population for the world: 1950–2050. [WWW] <URL: http://www.census.gov/population/international/data/idb/worldpoptotal.php> [Accessed 24 Nov 2011]

  • van den Bergh J, Verbruggen H (1999) Spatial sustainability, trade and indicators: An evaluation of the ecological footprint. Ecol. Econ. 29:61–72

    Article  Google Scholar 

  • Venetoulis J, Talberth J (2008) Refining the ecological footprint. Environ Dev Sustain 10(4):441–469

    Article  Google Scholar 

  • Vidal J (2007) World Bank accused of razing Congo forests. The Guardian, 4 October

    Google Scholar 

  • Vitousek PM, Ehrlich RH, Ehrlich AH, Matson PA (1986) Human appropriation of the products of photosynthesis. Bioscience 36(6):368–373

    Article  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of earth’s ecosystems. Science 277(5325):494–499

    Article  CAS  Google Scholar 

  • Whittaker R, Likens GE (1973) Primary production: the biosphere and man. Hum Ecol 1(4):25–36

    Google Scholar 

  • Wikipedia (2010) Bushmen. http://en.wikipedia.org/wiki/Bushmen

  • Wright DH (1990) Human impacts on energy flow through natural ecosystems, and implications for species endangerment. Ambio 19(4):189–194

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Beran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beran, L., Dyckhoff, H. (2019). Global Biomass Supply and Sustainable Development. In: Behnassi, M., Gupta, H., Pollmann, O. (eds) Human and Environmental Security in the Era of Global Risks. Springer, Cham. https://doi.org/10.1007/978-3-319-92828-9_15

Download citation

Publish with us

Policies and ethics