Skip to main content

The Importance of Organic Nitrogen Transport Processes for Plant Productivity and Nitrogen Use Efficiency

  • Chapter
  • First Online:
Engineering Nitrogen Utilization in Crop Plants

Abstract

Amino acids and ureides are the main nitrogen transport forms in plants. This review discusses key transporters that control root nitrogen uptake, as well as root-to-shoot and leaf-to-seed partitioning of organic nitrogen. It further examines the importance of amino acid and ureide transporters for plant growth, seed production, and plant nitrogen use efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAP:

Amino Acid Permease

AMT:

Ammonium Transporter

CAT:

Cationic Amino acid Transporter

DUR:

Degradation of urea (urea transporter)

LHT:

Lysine-Histidine-type Transporter

NRT:

Nitrate Transporter

PTR:

Peptide Transporter

NPF:

NRT1/PTR Family

ProT:

Proline Transporter

UmamiT:

Usually Multiple Acids Move In and out Transporter

UPS:

Ureide Permease

References

  • Allen SM, Guo M, Loussaert DF, Rupe M, Wang H, Pioneer Hi-Bred International, Inc., EI Dupont De Nemours & Company (2016) Enhanced nitrate uptake and nitrate translocation by over-expressing maize functional low-affinity nitrate transporters in transgenic maize. U.S. patent application 14/770,863

    Google Scholar 

  • Andrews M (1986) The partitioning of nitrate assimilation between root and shoot of higher plants. Plant, Cell Environ 9:511–519

    CAS  Google Scholar 

  • Andrews M, Morton JD, Lieffering M, Bisset L (1992) The partitioning of nitrate assimilation between root and shoot of a range of temperate cereals and pasture grasses. Ann Bot 70:271–276

    Article  Google Scholar 

  • Aoki N, Scofield GN, Wang X-D, Patrick JW, Offler CE, Furbank RT (2004) Expression and localisation analysis of the wheat sucrose transporter TaSUT1 in vegetative tissues. Plant 219:176–184

    Article  CAS  Google Scholar 

  • Atkins CA, Smith PM (2007) Translocation in legumes: assimilates, nutrients, and signaling molecules. Plant Physiol 144:550–561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Atkins CA, Pate JS, Sharkey PJ (1975) Asparagine metabolism—key to the nitrogen nutrition of developing legume seeds. Plant Physiol 56:807–812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bailey KJ, Leegood RC (2016) Nitrogen recycling from the xylem in rice leaves: dependence upon metabolism and associated changes in xylem hydraulics. J Exp Bot 67:2901–2911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bao A, Liang Z, Zhao Z, Cai H (2015) Overexpressing of OsAMT1-3, a high affinity ammonium transporter gene, modifies rice growth and carbon-nitrogen metabolic status. Int J Mol Sci 16:9037–9063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bárzana G, Aroca R, Bienert GP, Chaumont F, Ruiz-Lozano JM (2014) New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol Plant Microbe Interact 27:349–363

    Article  PubMed  CAS  Google Scholar 

  • van Bel AJ (1984) Quantification of the xylem-to-phloem transfer of amino acids by use of inulin [14C] carboxylic acid as xylem transport marker. Plant Sci Let 35:81–85

    Article  Google Scholar 

  • van Bel AJ (1990) Xylem-phloem exchange via the rays: the undervalued route of transport. J Exp Bot 41:631–644

    Article  Google Scholar 

  • van Bel AJ (1993) Strategies of phloem loading. Annu Rev Plant Phys Plant Mol Biol 44:253–281

    Article  Google Scholar 

  • Bergersen FJ (1971) Biochemistry of symbiotic nitrogen fixation in legumes. Ann Rev Plant Physiol 22:121–140

    Article  CAS  Google Scholar 

  • Besnard J, Pratelli R, Zhao C, Sonawala U, Collakova E, Pilot G, Okumoto S (2016) UMAMIT14 is an amino acid exporter involved in phloem unloading in Arabidopsis roots. J Exp Bot 67:6385–6397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bittsánszky A, Pilinszky K, Gyulai G, Komives T (2015) Overcoming ammonium toxicity. Plant Sci 231:184–190

    Article  PubMed  CAS  Google Scholar 

  • Bohner A, Kojima S, Hajirezaei M, Melzer M, Wirén N (2015) Urea retranslocation from senescing Arabidopsis leaves is promoted by DUR3-mediated urea retrieval from leaf apoplast. Plant J 81:377–387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Britto DT, Kronzucker HJ (2002) NH4+ toxicity in plants: a critical review. J Plant Physiol 159:567–584

    Article  CAS  Google Scholar 

  • Carter AM, Tegeder M (2016) Increasing nitrogen fixation and seed development in soybean requires complex adjustments of nodule nitrogen metabolism and partitioning processes. Curr Biol 26:2044–2051

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Fan X, Qian K, Zhang Y, Song M, Liu Y, Xu G, Fan X (2017) pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants. Plant Biotechnol J 15:1273–1283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Zhang Y, Tan Y, Zhang M, Zhu L, Xu G, Fan X (2016) Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter. Plant Biotechnol J 14:1705–1715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211

    Article  PubMed  CAS  Google Scholar 

  • Collier R, Tegeder M (2012) Soybean ureide transporters play a critical role in nodule development, function and nitrogen export. Plant J 72:355–367

    Article  PubMed  CAS  Google Scholar 

  • Commichau FM, Forchhammer K, Stülke J (2006) Regulatory links between carbon and nitrogen metabolism. Curr Opin Microbiol 9:167–172

    Google Scholar 

  • Delin S, Stenberg M (2014) Effect of nitrogen fertilization on nitrate leaching in relation to grain yield response on loamy sand in Sweden. Eur J Agron 52:291–296

    Article  CAS  Google Scholar 

  • Delrot S, Rochat C, Tegeder M, Frommer WB (2001) Amino acid transport. In: Lea P, Gaudry JFM (eds) Plant nitrogen. INRA-Springer, Paris, France, pp 215–235

    Google Scholar 

  • Dickson RE, Vogelmann TC, Larson PR (1985) Glutamine transfer from xylem to phloem and translocation to developing leaves of Populus deltoides. Plant Physiol 77:412–417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dordas CA, Sioulas C (2008) Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rainfed conditions. Indust Crops Prod 27:75–85

    Article  CAS  Google Scholar 

  • Drechsler N, Zheng Y, Bohner A, Nobmann B, von Wirén N, Kunze R, Rausch C (2015) Nitrate-dependent control of shoot K homeostasis by the nitrate transporter1/peptide transporter family member NPF7.3/NRT1.5 and the Stelar K+ outward rectifier SKOR in Arabidopsis. Plant Physiol 169:2832–2847

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dündar E, Bush DR (2009) BAT1, a bidirectional amino acid transporter in Arabidopsis. Planta 229:1047–1056

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ (1979) The most abundant protein in the world. Trends Biochem Sci 4:241–244

    Article  CAS  Google Scholar 

  • Engels C, Munkle L, Marschner H (1992) Effect of root zone temperature and shoot demand on uptake and xylem transport of macronutrients in maize (Zea mays L.). J Exp Bot 43:537–547

    Article  CAS  Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Assoc. Inc., Sunderland, UK

    Google Scholar 

  • Escudero A, Mediavilla S (2003) Decline in photosynthetic nitrogen use efficiency with leaf age and nitrogen resorption as determinants of leaf life span. J Ecol 91:880–889

    Article  Google Scholar 

  • Fan XR, Feng HM, Tan YW, Xu YL, Miao QS, Xu GH (2016a) A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. J Integr Plant Biol 58:590–599

    Article  PubMed  CAS  Google Scholar 

  • Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Lian X, Shen Q, Miller AJ, Xu G (2016b) Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci USA 113:7118–7123

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fan X, Naz M, Fan X, Xuan W, Miller AJ, Xu G (2017) Plant nitrate transporters: from gene function to application. J Exp Bot 68:2463–2475

    Article  PubMed  CAS  Google Scholar 

  • Fang Z, Xia K, Yang X, Grotemeyer MS, Meier S, Rentsch D, Xu X, Zhang M (2013) Altered expression of the PTR/NRT1 homologue OsPTR9 affects nitrogen utilization efficiency, growth and grain yield in rice. Plant Biotechnol J 11:446–458

    Article  PubMed  CAS  Google Scholar 

  • Farley RA, Fitter AH (1999) Temporal and spatial variation in soil resources in a deciduous woodland. J Ecol 87:688–696

    Article  Google Scholar 

  • Feng H, Li B, Zhi Y, Chen J, Li R, Xia X, Xu G, Fan X (2017) Overexpression of the nitrate transporter, OsNRT2.3b, improves rice phosphorus uptake and translocation. Plant Cell Rep 36:1287–1296

    Article  PubMed  CAS  Google Scholar 

  • Ferrario-Méry S, Valadier MH, Godefroy N, Miallier D, Hirel B, Foyer CH, Suzuki A (2002) Diurnal changes in ammonia assimilation in transformed tobacco plants expressing ferredoxin-dependent glutamate synthase mRNA in the antisense orientation. Plant Sci 163:59–67

    Article  Google Scholar 

  • Fischer WN, André B, Rentsch D, Krolkiewicz S, Tegeder M, Breitkreuz K, Frommer WB (1998) Amino acid transport in plants. Trends Plant Sci 3:188–195

    Article  Google Scholar 

  • Gallardo K, Firnhaber C, Zuber H, Héricher D, Belghazi M, Henry C, Küster H, Thompson R (2007) A combined proteome and transcriptome analysis of developing Medicago truncatula seeds: evidence for metabolic specialization of maternal and filial tissues. Mol Cell Proteomics 6:2165–2179

    Article  PubMed  CAS  Google Scholar 

  • Gambín BL, Borrás L (2010) Resource distribution and the trade-off between seed number and seed weight: a comparison across crop species. Ann Appl Biol 156:91–102

    Article  Google Scholar 

  • Ganeteg U, Ahmad I, JämtgÃ¥rd S, Aguetoni-Cambui C, Inselsbacher E, Svennerstam H, Schmidt S, Näsholm T (2017) Amino acid transporter mutants of Arabidopsis provides evidence that a non-mycorrhizal plant acquires organic nitrogen from agricultural soil. Plant, Cell Environ 40:413–423

    Article  CAS  Google Scholar 

  • Geiger D, Giaquinta R, Sovonick S, Fellows R (1973) Solute distribution in sugar beet leaves in relation to phloem loading and translocation. Plant Physiol 52:585–589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Girondé A, Etienne P, Trouverie J, Bouchereau A, Le Cahérec F, Leport L, Orsel M, Niogret MF, Nesi N, Carole D, Soulay F (2015) The contrasting N management of two oilseed rape genotypes reveals the mechanisms of proteolysis associated with leaf N remobilization and the respective contributions of leaves and stems to N storage and remobilization during seed filling. BMC Plant Biol 15:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glass AD, Britto DT, Kaiser BN, Kinghorn JR, Kronzucker HJ, Kumar A, Okamoto M, Rawat S, Siddiqi MY, Unkles SE, Vidmar JJ (2002) The regulation of nitrate and ammonium transport systems in plants. J Exp Bot 53:855–864

    Article  PubMed  CAS  Google Scholar 

  • Gouia H, Ghorbal MH, Touraine B (1994) Effects of NaCl on flows of N and mineral ions and on NO -3 reduction rate within whole plants of salt-sensitive bean and salt-tolerant cotton. Plant Physiol 105:1409–1418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grallath S, Weimar T, Meyer A, Gumy C, Suter-Grotemeyer M, Neuhaus JM, Rentsch D (2005) The AtProT family. Compatible solute transporters with similar substrate specificity but differential expression patterns. Plant Physiol 137:117–126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gregorich EG, Monreal CM, Carter MR, Angers DA, Ellert B (1994) Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can J Soil Sci 74:367–385

    Article  CAS  Google Scholar 

  • Guo F-Q, Wang R, Crawford NM (2002) The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is regulated by auxin in both shoots and roots. J Exp Bot 53:835–844

    Article  PubMed  CAS  Google Scholar 

  • Guo S, Kaldenhoff R, Uehlein N, Sattelmacher B, Brueck H (2007) Relationship between water and nitrogen uptake in nitrate-and ammonium-supplied Phaseolus vulgaris L. plants. J Plant Nutr Soil Sci 170:73–80

    Article  CAS  Google Scholar 

  • Habash DZ, Massiah AJ, Rong HL, Wallsgrove RM, Leigh RA (2001) The role of cytosolic glutamine synthetase in wheat. Ann Appl Biol 138:83–89

    Article  CAS  Google Scholar 

  • Hammes UZ, Nielsen E, Honaas LA, Taylor CG, Schachtman DP (2006) AtCAT6, a sink-tissue-localized transporter for essential amino acids in Arabidopsis. Plant J 48:414–426

    Article  PubMed  CAS  Google Scholar 

  • Haynes RJ (2012) Uptake and assimilation of mineral nitrogen by plants. Mineral nitrogen in the plant-soil system. Elsevier Science, Orlando, Fl, USA, pp 303–378

    Google Scholar 

  • Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, Frommer W, Koch W (2006) Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18:1931–1946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C (2015) Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet 47:834–878

    Article  PubMed  CAS  Google Scholar 

  • Huang N-C, Liu K-H, Lo H-J, Tsay Y-F (1999) Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell 11:1381–1392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hunt E, Gattolin S, Newbury HJ, Bale JS, Tseng HM, Barrett DA, Pritchard J (2010) A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected. J Exp Bot 61:55–64

    Article  PubMed  CAS  Google Scholar 

  • Jahn TP, Møller AL, Zeuthen T, Holm LM, Klærke DA, Mohsin B, Kühlbrandt W, Schjoerring JK (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett 574:31–36

    Article  PubMed  CAS  Google Scholar 

  • Ju X, Liu X, Zhang F, Roelcke M (2004) Nitrogen fertilization, soil nitrate accumulation, and policy recommendations in several agricultural regions of China. Ambio 33:300–305

    Article  PubMed  Google Scholar 

  • Khan S (1971) Nitrogen fractions in a gray wooded soil as influenced by long-term cropping systems and fertilizers. Can J Soil Sci 51:431–437

    Article  CAS  Google Scholar 

  • Kempers R, Ammerlaan A, van Bel AJ (1998) Symplasmic constriction and ultrastructural features of the sieve element/companion cell complex in the transport phloem of apoplasmically and symplasmically phloem-loading species. Plant Physiol 116:271–278

    Article  PubMed Central  CAS  Google Scholar 

  • Knoblauch M, Knoblauch J, Mullendore DL, Savage JA, Babst BA, Beecher SD, Dodgen AC, Jensen KH, Holbrook NM (2016) Testing the Münch hypothesis of long distance phloem transport in plants. eLife 5:e15341

    Google Scholar 

  • Kojima S, Bohner A, Gassert B, Yuan L, Wirén NV (2007) AtDUR3 represents the major transporter for high-affinity urea transport across the plasma membrane of nitrogen-deficient Arabidopsis roots. Plant J 52:30–40

    Article  PubMed  CAS  Google Scholar 

  • Kojima S, Bohner A, Von Wirén N (2006) Molecular mechanisms of urea transport in plants. J Membr Biol 212:83–91

    Article  PubMed  CAS  Google Scholar 

  • Komarova NY, Thor K, Gubler A, Meier S, Dietrich D, Weichert A, Grotemeyer MS, Tegeder M, Rentsch D (2008) AtPTR1 and AtPTR5 transport dipeptides in planta. Plant Physiol 148:856–869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince AS, Chaillou S, Ferrario-Méry S, Meyer C, Daniel-Vedele F (2014) Nitrate transport and signalling in Arabidopsis. J Exp Bot 65:789–798

    Article  PubMed  CAS  Google Scholar 

  • Krapp A (2015) Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Current Opin Plant Biol 25:115–122

    Article  CAS  Google Scholar 

  • Kumar A, Kaiser BN, Siddiqi MY, Glass AD (2006) Functional characterisation of OsAMT1.1 overexpression lines of rice, Oryza sativa. Funct Plant Biol 33:339–346

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Goh K (2002) Recovery of 15N-labelled fertilizer applied to winter wheat and perennial ryegrass crops and residual 15N recovery by succeeding wheat crops under different crop residue management practices. Nutr Cycl Agroecosys 62:123–130

    Article  CAS  Google Scholar 

  • Ladwig F, Stahl M, Ludewig U, Hirner AA, Hammes UZ, Stadler R, Harter K, Koch W (2012) Siliques are Red1 from Arabidopsis acts as a bidirectional amino acid transporter that is crucial for the amino acid homeostasis of siliques. Plant Physiol 158:1643–1655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM (1996) The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Ann Rev Plant Biol 47:569–593

    Article  CAS  Google Scholar 

  • Lassaletta L, Billen G, Grizzetti B, Garnier J, Leach AM, Galloway JN (2014) Food and feed trade as a driver in the global nitrogen cycle: 50–year trends. Biogeochemistry 118:225–241

    Article  Google Scholar 

  • Lea PJ, Azevedo RA (2006) Nitrogen use efficiency. 1. Uptake of nitrogen from the soil. Ann Appl Biol 149:243–247

    Article  CAS  Google Scholar 

  • Lee BR, Lee DG, Avice JC, Kim TH (2014) Characterization of vegetative storage protein (VSP) and low molecular proteins induced by water deficit in stolon of white clover. Biochem Biophys Res Commun 443:229–233

    Article  PubMed  CAS  Google Scholar 

  • Lee Y-H, Foster J, Chen J, Voll L, Weber A, Tegeder M (2007) AAP1 transports uncharged amino acids into roots of Arabidopsis. Plant J 50:305–316

    Article  PubMed  CAS  Google Scholar 

  • Lehmann S, Gumy C, Blatter E, Boeffel S, Fricke W, Rentsch D (2011) In planta function of compatible solute transporters of the AtProT family. J Exp Bot 62:787–796

    Article  PubMed  CAS  Google Scholar 

  • Lemaître T, Gaufichon L, Boutet-Mercey S, Christ A, Masclaux-Daubresse C (2008) Enzymatic and metabolic diagnostic of nitrogen deficiency in Arabidopsis thaliana Wassileskija accession. Plant Cell Physiol 49:1056–1065

    Article  PubMed  CAS  Google Scholar 

  • Léran S, Varala K, Boyer JC, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W (2014) A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci 19:5–9

    Article  PubMed  CAS  Google Scholar 

  • Lewis CE, Noctor G, Causton D, Foyer CH (2000) Regulation of assimilate partitioning in leaves. Funct Plant Biol 27:507–519

    Article  CAS  Google Scholar 

  • Li W, Wang Y, Okamoto M, Crawford NM, Siddiqi MY, Glass AD (2007) Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Phys 143:425–433

    Article  CAS  Google Scholar 

  • Liu KH, Huang CY, Tsay YF (1999) CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11:865–874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, Ahn J-E, Datta S, Salzman RA, Moon J, Huyghues-Despointes B, Pittendrigh B, Murdock LL, Koiwa H, Zhu-Salzman K (2005) Arabidopsis vegetative storage protein is an insect acid phosphatase. Plant Physiol 139:1545–1556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu G, Ji Y, Bhuiyan NH, Pilot G, Selvaraj G, Zou J, Wei Y (2010) Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis. Plant Cell 22:3845–3863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lohaus G, Winter H, Riens B, Heldt HW (1995) Further studies of the phloem loading process in leaves of barley and spinach. The comparison of metabolite concentrations in the apoplastic compartment with those in the cytosolic compartment and in the sieve tubes. Plant Biol 108:270–275

    CAS  Google Scholar 

  • Loqué D, Ludewig U, Yuan L, von Wirén N (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol 137:671–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loqué D, von Wirén N (2004) Regulatory levels for the transport of ammonium in plant roots. J Exp Bot 55:1293–1305

    Article  PubMed  CAS  Google Scholar 

  • Makino A, Osmond B (1991) Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiol 96:355–362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Makino A (2011) Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol 155:125–129

    Article  PubMed  CAS  Google Scholar 

  • Masclaux-Daubresse C, Chardon F (2011) Exploring nitrogen remobilization for seed filling using natural variation in Arabidopsis thaliana. J Exp Bot 62:2131–2142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martre P, Porter JR, Jamieson PD, Triboï E (2003) Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat. Plant Physiol 133:1959–1967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mérigout P, Lelandais M, Bitton F, Renou JP, Briand X, Meyer C, Daniel-Vedele F (2008) Physiological and transcriptomic aspects of urea uptake and assimilation in Arabidopsis plants. Plant Physiol 147:1225–1238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miflin BJ, Lea PJ (1977) Amino acid metabolism. Annu Rev Plant Physio 28:299–329

    Article  CAS  Google Scholar 

  • Millard P (1988) The accumulation and storage of nitrogen by herbaceous plants. Plant, Cell Environ 11:1–8

    Article  CAS  Google Scholar 

  • Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM (2007) Nitrate transport and signalling. J Exp Bot 58:2297–2306

    Article  PubMed  CAS  Google Scholar 

  • Miret JA, Munné-Bosch S (2014) Plant amino acids derived vitamins: biosynthesis and function. Amino Acids 46:809–824

    Article  PubMed  CAS  Google Scholar 

  • Moll R, Kamprath E, Jackson W (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J 74:562–564

    Article  Google Scholar 

  • Mueller ND, West PC, Gerber JS, MacDonald GK, Polasky S, Foley JA (2014) A tradeoff frontier for global nitrogen use and cereal production. Environ Res Lett 9:P054002

    Article  CAS  Google Scholar 

  • Müller B, Fastner A, Karmann J, Mansch V, Hoffmann T, Schwab W, Suter-Grotemeyer M, Rentsch D, Truernit E, Ladwig F, Bleckmann A (2015) Amino acid export in developing Arabidopsis seeds depends on UmamiT facilitators. Curr Biol 25:3126–3131

    Article  PubMed  CAS  Google Scholar 

  • Muurinen S, Kleemola J, Peltonen-Sainio P (2007) Accumulation and translocation of nitrogen in spring cereal cultivars differing in nitrogen use efficiency. Agron J 99:441–449

    Article  CAS  Google Scholar 

  • Nacry P, Bouguyon E, Gojon A (2013) Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 370:1–29

    Article  CAS  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    Article  PubMed  CAS  Google Scholar 

  • Nunes-Nesi A, Fernie AR, Stitt M (2010) Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant 3:973–996

    Article  PubMed  CAS  Google Scholar 

  • Offler CE, McCurdy DW, Patrick JW, Talbot MJ (2003) Transfer cells: cells specialized for a special purpose. Annu Rev Plant Biol 54:431–454

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M, Vidmar JJ, Glass ADM (2003) Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol 44:304–317

    Article  PubMed  CAS  Google Scholar 

  • Oparka KJ, Turgeon R (1999) Sieve elements and companion cells—traffic control centers of the phloem. Plant Cell 11:739–750

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pate JS (1980) Transport and partitioning of nitrogenous solutes. Ann Rev Plant Physio 31:313–340

    Article  CAS  Google Scholar 

  • Pate JS, Sharkey PJ, Lewis OAM (1975) Xylem to phloem transfer of solutes in fruiting shoots of legumes, studied by a phloem bleeding technique. Planta 122:11–26

    Article  PubMed  CAS  Google Scholar 

  • Patrick JW (1997) Phloem unloading: sieve element unloading and post-sieve element transport. Annu Rev Plant Biol 48:191–222

    Article  CAS  Google Scholar 

  • Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Carroll BJ, Schenk PM, Schmidt S (2008) Plants can use protein as a nitrogen source without assistance from other organisms. P Natl Acad Sci USA 105:4524–4529

    Article  Google Scholar 

  • Pélissier H, Frerich A, Desimone M, Schumacher K, Tegeder M (2004) PvUPS1, an allantoin transporter in nodulated roots of French bean. Plant Physiol 134:664–675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pélissier H, Tegeder M (2007) PvUPS1 plays a role in source-sink transport of allantoin in French bean (Phaseolus vulgaris). Funct Plant Biol 18:282–291

    Article  Google Scholar 

  • Peoples MB, Pate JS, Atkins CA, Murray DR (1985) Economy of water, carbon, and nitrogen in the developing cowpea fruit. Plant Physiol 77:142–147

    Article  PubMed  Google Scholar 

  • Perchlik M, Foster J, Tegeder M (2014) Different and overlapping functions of Arabidopsis LHT6 and AAP1 transporters in root amino acid uptake. J Exp Bot 65:5193–5204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perchlik M, Tegeder M (2017) Improving plant nitrogen use efficiency through alteration of amino acid transport processes. Plant Physiol 175:235–247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rainbird RM, Thorne JH, Hardy RW (1984) Role of amides, amino acids, and ureides in the nutrition of developing soybean seeds. Plant Physiol 74:329–334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ranathunge K, El-kereamy A, Gidda S, Bi YM, Rothstein SJ (2014) AMT1;1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions. J Exp Bot 65:965–979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raun W, Johnson G (1999) Improving nitrogen use efficiency for cereal production. Agron J 91:357–363

    Article  Google Scholar 

  • Rentsch D, Schmidt S, Tegeder M (2007) Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581:2281–2289

    Article  PubMed  CAS  Google Scholar 

  • Rennie EA, Turgeon R (2009) A comprehensive picture of phloem loading strategies. Proc Natl Acad Sci USA 106:14162–14167

    Article  PubMed  PubMed Central  Google Scholar 

  • Rolletschek H, Hosein F, Miranda M, Heim U, Götz KP, Schlereth A, Borisjuk L, Saalbach I, Wobus U, Weber H (2005) Ectopic expression of an amino acid transporter (VfAAP1) in seeds of Vicia narbonensis and pea increases storage proteins. Plant Physiol 137:1236–1249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruffel S, Krouk G, Ristova D, Shasha D, Birnbaum KD, Coruzzi GM (2011) Nitrogen economics of root foraging: transitive closure of the nitrate–cytokinin relay and distinct systemic signaling for N supply vs. demand. Proc Natl Acad Sci USA 108:18524–18529

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanders A, Collier R, Trethewy A, Gould G, Sieker R, Tegeder M (2009) AAP1 regulates import of amino acids into developing Arabidopsis embryos. Plant J 59:540–552

    Article  PubMed  CAS  Google Scholar 

  • Santiago J, Tegeder M (2016) Connecting source with sink: the role of Arabidopsis AAP8 in phloem loading of amino acids. Plant Physiol 171:508–521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scharff AM, Egsgaard H, Hansen PE, Rosendahl L (2003) Exploring symbiotic nitrogen fixation and assimilation in pea root nodules by in vivo 15N nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry. Plant Physiol 131:367–378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schobert C, Komor E (1990) Transfer of amino acids and nitrate from the roots into the xylem of Ricinus communis seedlings. Planta 181:85–90

    Article  PubMed  CAS  Google Scholar 

  • Schmidt R, Stransky H, Koch W (2007) The amino acid permease AAP8 is important for early seed development in Arabidopsis thaliana. Planta 226:805–813

    Article  PubMed  CAS  Google Scholar 

  • Schneitz K, Hülskamp M, Pruitt RE (1995) Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. Plant J 7:731–749

    Article  Google Scholar 

  • Schubert KR (1986) Products of biological nitrogen fixation in higher plants: synthesis, transport, and metabolism. Ann Rev Plant Physiol 37:539–574

    Article  CAS  Google Scholar 

  • Seiffert B, Zhou Z, Wallbraun M, Lohaus G, Möllers C (2004) Expression of a bacterial asparagine synthetase gene in oilseed rape (Brassica napus) and its effect on traits related to nitrogen efficiency. Physiol Plant 121:656–665

    Article  CAS  Google Scholar 

  • Senwo Z, Tabatabai M (1998) Amino acid composition of soil organic matter. Biol Fert Soils 26:235–242

    Article  CAS  Google Scholar 

  • Servaites JC, Schrader LE, Jung DM (1979) Energy-dependent loading of amino acids and sucrose into the phloem of soybean. Plant Physiol 64:546–550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slewinski TL, Meeley R, Braun DM (2009) Sucrose transporter1 functions in phloem loading in maize leaves. J Exp Bot 60:881–892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sonoda Y, Ikeda A, Saiki S, Wirén NV, Yamaya T, Yamaguchi J (2003) Distinct expression and function of three ammonium transporter genes (OsAMT1;1–1;3) in rice. Plant Cell Physiol 44:726–734

    Article  PubMed  CAS  Google Scholar 

  • Stadler R, Lauterbach C, Sauer N (2005) Cell-to-cell movement of green fluorescent protein reveals post-phloem transport in the outer integument and identifies symplastic domains in Arabidopsis seeds and embryos. Plant Physiol 139:701–712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stahl A, Friedt W, Wittkop B, Snowdon RJ (2016) Complementary diversity for nitrogen uptake and utilisation efficiency reveals broad potential for increased sustainability of oilseed rape production. Plant Soil 400:245–262

    Article  CAS  Google Scholar 

  • Stöhr C, Mäck G (2001) Diurnal changes in nitrogen assimilation of tobacco roots. J Exp Bot 52:1283–1289

    Article  PubMed  Google Scholar 

  • Streeter J (1979) Allantoin and allantoic acid in tissues and stem exudate from filed grown soybean plants. Plant Physiol 63:478–480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Svennerstam H, Ganeteg U, Bellini C, Näsholm T (2007) Comprehensive screening of Arabidopsis mutants suggests the Lysine Histidine Transporter 1 to be involved in plant uptake of amino acids. Plant Physiol 143:1853–1860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Svennerstam H, Ganeteg U, Näsholm T (2008) Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5. New Phytol 180:620–630

    Article  PubMed  CAS  Google Scholar 

  • Svennerstam H, JämtgÃ¥rd S, Ahmad I, Huss-Danell K, Näsholm T, Ganeteg U (2011) Transporters in Arabidopsis roots mediating uptake of amino acids at naturally occurring concentrations. New Phytol 191:459–467

    Article  PubMed  CAS  Google Scholar 

  • Tajima S, Nomura M, Kouchi H (2004) Ureide biosynthesis in legume nodules. Front Biosci 9:1374–1381

    Article  PubMed  CAS  Google Scholar 

  • Tan Q, Grennan AK, Pélissier HC, Rentsch D, Tegeder M (2008) Characterization and expression of French bean amino acid transporter PvAAP1. Plant Sci 174:348–356

    Article  CAS  Google Scholar 

  • Tan Q, Zhang L, Grant J, Cooper P, Tegeder M (2010) Increased phloem transport of S-methylmethionine positively affects sulfur and nitrogen metabolism and seed development in pea plants. Plant Physiol 154:1886–1896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tegeder M (2014) Transporters involved in source to sink partitioning of amino acids and ureides: opportunities for crop improvement. J Exp Bot 65:1865–1878

    Article  PubMed  CAS  Google Scholar 

  • Tegeder M, Masclaux-Daubresse C (2017) Source and sink mechanisms of nitrogen transport and use. New Phytol. https://doi.org/10.1111/nph.14876

    Article  PubMed  Google Scholar 

  • Tegeder M, Rentsch D (2010) Uptake and partitioning of amino acids and peptides. Mol Plant 3:997–1011

    Article  PubMed  CAS  Google Scholar 

  • Tegeder M, Ward JM (2012) Molecular evolution of plant AAP and LHT amino acid transporters. Front Plant Sci 3:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tegeder M, Tan Q, Grennan AK, Patrick JW (2007) Amino acid transporter expression and localisation studies in pea (Pisum sativum). Funct Plant Biol 34:1019–1028

    Article  CAS  PubMed  Google Scholar 

  • Todd CD, Tipton PA, Blevins DG, Piedras P, Pineda M, Polacco JC (2006) Update on ureide degradation in legumes. J Exp Bot 57:5–12

    Article  PubMed  Google Scholar 

  • Tsay YF, Fan SC, Chen HY; Academia Sinica (2011) Method for changing nitrogen utilization efficiency in plants. U.S. Patent Application 12/832,234

    Google Scholar 

  • Wang WH, Köhler B, Cao FQ, Liu GW, Gong YY, Sheng S, Song QC, Cheng XY, Garnett T, Okamoto M, Qin R (2012) Rice DUR3 mediates high-affinity urea transport and plays an effective role in improvement of urea acquisition and utilization when expressed in Arabidopsis. New Phytol 193:432–444

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Liu D, Crawford NM (1998) The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake. Proc Natl Acad Sci USA 95:15134–15139

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Weber H, Borisjuk L, Heim U, Buchner P, Wobus U (1995) Seed coat-associated invertases of fava bean control both unloading and storage functions: cloning of cDNAs and cell type-specific expression. Plant Cell 7:1835–1846

    PubMed  PubMed Central  CAS  Google Scholar 

  • Weigelt K, Küster H, Radchuk R, Müller M, Weichert H, Fait A, Fernie AR, Saalbach I, Weber H (2008) Increasing amino acid supply in pea embryos reveals specific interactions of N and C metabolism, and highlights the importance of mitochondrial metabolism. Plant J 55:909–926

    Article  PubMed  CAS  Google Scholar 

  • Windt CW, Vergeldt FJ, de Jager PA, Van As H (2006) MRI of long-distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant, Cell Environ 29:1715–1729

    Article  CAS  Google Scholar 

  • Winter H, Lohaus G, Heldt HW (1992) Phloem transport of amino acids in relation to their cytosolic levels in barley leaves. Plant Physiol 99:996–1004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu G, Fan X, Miller A (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182

    Article  PubMed  CAS  Google Scholar 

  • Yan M, Fan X, Feng H, Miller AJ, Shen Q, Xu G (2011) Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant, Cell Environ 34:1360–1372

    Article  CAS  Google Scholar 

  • Yang L, Cao W, Thorup-Kristensen K, Bai J, Gao S, Chang D (2015) Effect of Orychophragmus violaceus incorporation on nitrogen uptake in succeeding maize. Plant Soil Environ 61:260–265

    Article  CAS  Google Scholar 

  • Zhang L, Tan Q, Lee R, Trethewy A, Lee Y, Tegeder M (2010) Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis. Plant Cell 22:3603–3620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L, Garneau M, Majumdar R, Grant J, Tegeder M (2015) Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids. Plant J 81:134–146

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Vivanco JM, Manter DK (2016) Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Appl Soil Ecol 107:324–333

    Article  Google Scholar 

  • Zrenner R, Stitt M, Sonnewald U, Boldt R (2006) Pyrimidine and purine biosynthesis and degradation in plants. Ann Rev Plant Biol 57:805–836

    Article  CAS  Google Scholar 

  • Züst T, Agrawal AA (2016) Mechanisms and evolution of plant resistance to aphids. Nat Plants 2:15206

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

M.T. acknowledges support from the US National Science Foundation (IOS-1457183) and the Agriculture and Food Research Initiative (AFRI) competitive award number 2017-67013-26158 from the USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mechthild Tegeder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tegeder, M., Perchlik, M. (2018). The Importance of Organic Nitrogen Transport Processes for Plant Productivity and Nitrogen Use Efficiency. In: Shrawat, A., Zayed, A., Lightfoot, D. (eds) Engineering Nitrogen Utilization in Crop Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-92958-3_13

Download citation

Publish with us

Policies and ethics