Skip to main content

Systems-Level Analysis of Bacterial Regulatory Small RNA Networks

  • Chapter
  • First Online:
Systems Biology

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

The RNA landscape of all sequenced bacteria is littered with regulatory noncoding small RNAs (sRNA). Understanding the functions of these sRNAs has lagged behind their identification, as few high-throughput approaches existed to capture sRNA interactions in vivo. Recently, methodologies have been described that allow for profiling of the sRNA interaction network facilitating systems-level analysis sRNA regulation. This chapter discusses recent advances in our understanding of sRNA function, technical advances that allow us to capture sRNA interactions in vivo, and the computational tools that allow meaningful conclusions to be drawn from these data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A list of manually curated essential genes from the Ecoliwiki (2017) Retrieved December 31, 2017 from http://ecoliwiki.net/colipedia/index.php?title=Welcome_to_EcoliWiki&oldid=1491803

  • Altuvia S, Weinstein-Fischer D, Zhang A et al (1997) A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 90:43–53

    Article  PubMed  CAS  Google Scholar 

  • Argaman L, Argaman L, Hershberg R et al (2001) Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol 11:941–950

    Article  PubMed  CAS  Google Scholar 

  • Aw JGA, Shen Y, Wilm A et al (2016) In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol Cell 62:603–617

    Article  CAS  PubMed  Google Scholar 

  • Bandyra KJ, Said N, Pfeiffer V et al (2012) The seed region of a small RNA drives the controlled destruction of the target mRNA by the endoribonuclease RNase E. Mol Cell 47:943–953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  PubMed  CAS  Google Scholar 

  • Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  PubMed  CAS  Google Scholar 

  • Barquist L, Vogel J (2015) Accelerating discovery and functional analysis of small RNAs with new technologies. Annu Rev Genet 49:367–394

    Article  PubMed  CAS  Google Scholar 

  • Barquist L, Westermann AJ, Vogel J (2016) Molecular phenotyping of infection-associated small non-coding RNAs. Philos Trans R Soc Lond 371:20160081

    Article  CAS  Google Scholar 

  • Bernhart SH, Hofacker IL, Stadler PF (2006) Local RNA base pairing probabilities in large sequences. Bioinformatics 22:614–615

    Article  PubMed  CAS  Google Scholar 

  • Bouvier M, Sharma CM, Mika F et al (2008) Small RNA binding to 5′ mRNA coding region inhibits translational initiation. Mol Cell 32:827–837

    Article  PubMed  CAS  Google Scholar 

  • Breitkreutz D, Hlatky L, Rietman E et al (2012) Molecular signaling network complexity is correlated with cancer patient survivability. Proc Natl Acad Sci USA 109:9209–9212

    Article  PubMed  PubMed Central  Google Scholar 

  • Brownlee GG (1971) Sequence of 6S RNA of E. coli. Nat New Biol 229:147–149

    Article  PubMed  CAS  Google Scholar 

  • Busch A, Richter AS, Backofen R (2008) IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24:2849–2856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carbon S, Dietze H, Lewis SE et al (2017) Expansion of the gene ontology knowledgebase and resources: the gene ontology consortium. Nucleic Acids Res 45:D331–D338

    Article  CAS  Google Scholar 

  • Chao Y, Li L, Girodat D et al (2017) In vivo cleavage map illuminates the central role of RNase E in coding and non-coding RNA pathways. Mol Cell 65:39–51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coleman J, Green PJ, Inouye M (1984) The use of RNAs complementary to specific mRNAs to regulate the expression of individual bacterial genes. Cell 37:429–436

    Article  PubMed  CAS  Google Scholar 

  • Collavin L, Lunardi A, Del Sal G (2010) p53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death Differ 17:901–911

    Article  PubMed  CAS  Google Scholar 

  • Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int J Complex Syst 1695:1695

    Google Scholar 

  • Deana A, Belasco JG (2005) Lost in translation: the influence of ribosomes on bacterial mRNA decay. Genes Dev 19:2526–2533

    Article  PubMed  CAS  Google Scholar 

  • Eggenhofer F, Tafer H, Stadler PF et al (2011) RNApredator: fast accessibility-based prediction of sRNA targets. Nucleic Acids Res 39:W149–W154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng L, Rutherford ST, Papenfort K et al (2015) A Qrr noncoding RNA deploys four different regulatory mechanisms to optimize quorum-sensing dynamics. Cell 160:228–240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fröhlich KS, Papenfort K, Fekete A et al (2013) A small RNA activates CFA synthase by isoform-specific mRNA stabilization. EMBO J 32:2963–2979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gama-Castro S, Salgado H, Santos-Zavaleta A et al (2016) RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond. Nucleic Acids Res 44:D133–D143

    Article  PubMed  CAS  Google Scholar 

  • Gerdes SY, Scholle MD, Campbell JW et al (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185:5673–5684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghadie MA, Coulombe-Huntington J, Xia Y (2018) Interactome evolution: insights from genome-wide analyses of protein–protein interactions. Curr Opin Struct Biol 50:42–48

    Article  PubMed  CAS  Google Scholar 

  • Gogol EB, Rhodius VA, Papenfort K et al (2011) Small RNAs endow a transcriptional activator with essential repressor functions for single-tier control of a global stress regulon. Proc Natl Acad Sci USA 108:12875–12880

    Article  PubMed  PubMed Central  Google Scholar 

  • Gottesman S, Storz G (2011) Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 3:a003798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grosswendt S, Filipchyk A, Manzano M et al (2014) Unambiguous Identification of miRNA: target site interactions by different types of ligation reactions. Mol Cell 54:1042–1054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo MS, Updegrove TB, Gogol EB et al (2014) MicL, a new σE-dependent sRNA, combats envelope stress by repressing synthesis of Lpp, the major outer membrane lipoprotein. Genes Dev 28:1620–1634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han K, Tjaden B, Lory S (2016) GRIL-seq provides a method for identifying direct targets of bacterial small regulatory RNA by in vivo proximity ligation. Nat Microbiol 2:16239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Helwak A, Kudla G, Dudnakova T et al (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hofree M, Shen JP, Carter H et al (2013) Network-based stratification of tumor mutations. Nat Methods 10:1108–1115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang HY, Chang HY, Chou CH et al (2009) sRNAMap: genomic maps for small non-coding RNAs, their regulators and their targets in microbial genomes. Nucleic Acids Res 37:D150–D154

    Article  CAS  PubMed  Google Scholar 

  • Isik Z, Baldow C, Cannistraci CV et al (2015) Drug target prioritization by perturbed gene expression and network information. Sci Rep 5:17417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jagodnik J, Chiaruttini C, Guillier M (2017) Stem-loop structures within mRNA coding sequences activate translation initiation and mediate control by small regulatory RNAs. Mol Cell 68:158–170

    Article  CAS  PubMed  Google Scholar 

  • Kacharia FR, Millar JA, Raghavan R (2017) Emergence of new sRNAs in enteric bacteria is associated with low expression and rapid evolution. J Mol Evol 84:204–213

    Article  CAS  PubMed  Google Scholar 

  • Kato J, Hashimoto M (2007) Construction of consecutive deletions of the Escherichia coli chromosome. Mol Sys Biol 3:132

    Google Scholar 

  • Kauke MJ, Traxlmayr MW, Parker JA et al (2017) An engineered protein antagonist of K-Ras/B-Raf interaction. Sci Rep 42:5831

    Article  CAS  Google Scholar 

  • Kavita K, de Mets F, Gottesman S (2017) New aspects of RNA-based regulation by Hfq and its partner sRNAs. Curr Opin Microbiol 42:53–61

    Article  PubMed  CAS  Google Scholar 

  • Keller EF (2005) Revisiting “scale-free” networks. BioEssays 27:1060–1068

    Article  PubMed  Google Scholar 

  • Kery MB, Feldman M, Livny J et al (2017) TargetRNA2: identifying targets of small regulatory RNAs in bacteria. Nucleic Acids Res 42:124–129

    Article  CAS  Google Scholar 

  • Kim H, Jung K-W, Maeng S et al (2015) Network-assisted genetic dissection of pathogenicity and drug resistance in the opportunistic human pathogenic fungus Cryptococcus neoformans. Sci Rep 5:8767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for visualization and analysis of biological networks. In: Hamacher M, Eisenacher M, Stephan C (eds) Data mining in proteomics, vol 696. Humana, New York, pp 291–303

    Chapter  Google Scholar 

  • Kudla G, Granneman S, Hahn D et al (2011) Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc Natl Acad Sci USA 108:10010–10015

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Beloglazova N, Bundalovic-Torma C et al (2015) Conditional epistatic interaction maps reveal global functional rewiring of genome integrity pathways in Escherichia coli. Cell Rep 14:648–661

    Article  CAS  Google Scholar 

  • Lalaouna D, Simoneau-Roy M, Lafontaine D et al (2013) Regulatory RNAs and target mRNA decay in prokaryotes. Biochim Biophys Acta 1829:742–747

    Article  PubMed  CAS  Google Scholar 

  • Lalaouna D, Carrier MC, Semsey S et al (2015) A 3′ external transcribed spacer in a tRNA transcript acts as a sponge for small RNAs to prevent transcriptional noise. Mol Cell 58:393–405

    Google Scholar 

  • Levine E, Zhang Z, Kuhlman T et al (2007) Quantitative characteristics of gene regulation by small RNA. PLoS Biol 5:1998–2010

    Article  CAS  Google Scholar 

  • Lu Z, Zhang QC, Lee B et al (2016) RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165:1267–1279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Majdalani N, Hernandez D, Gottesman S (2002) Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol 46:813–826

    Article  PubMed  CAS  Google Scholar 

  • Massé E, Escorcia FE, Gottesman S (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17:2374–2383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Massé E, Vanderpool CK, Gottesman S (2005) Effect of RyhB small RNA on global iron use in Escherichia coli. J Bacteriol 187:6962–6971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melamed S, Peer A, Faigenbaum-Romm R et al (2016) Global mapping of small RNA-target interactions in bacteria. Mol Cell 63:884–897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Menche J, Sharma A, Kitsak M et al (2015) Uncovering disease-disease relationships through the incomplete interactome. Science 347:1257601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miyakoshi M, Chao Y, Vogel J (2015) Cross talk between ABC transporter mRNAs via a target mRNA-derived sponge of the GcvB small RNA. EMBO J 34:1478–1492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mizuno T, Chou MY, Inouye M (1984) A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci USA 81:1966–1970

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nedialkova LP, Denzler R, Koeppel MB et al (2014) Inflammation fuels colicin Ib-dependent competition of Salmonella serovar typhimurium and E. coli in enterobacterial blooms. PLoS Pathogens 10:1003844

    Article  CAS  Google Scholar 

  • Nguyen TC, Cao X, Yu P et al (2016) Mapping RNA–RNA interactome and RNA structure in vivo by MARIO. Nat Commun 7:12023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papenfort K, Vanderpool CK (2015) Target activation by regulatory RNAs in bacteria. FEMS Microbiol Rev 39:362–378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papenfort K, Sun Y, Miyakoshi M et al (2013) Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis. Cell 153:426–437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papenfort K, Espinosa E, Casadesús J (2015) Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella. Proc Natl Acad Sci USA 112:E4772–E4781

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peer A, Margalit H (2011) Accessibility and evolutionary conservation mark bacterial small-RNA target-binding regions. J Bacteriol 193:1690–1701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plumbridge J, Bossi L, Oberto J et al (2014) Interplay of transcriptional and small RNA-dependent control mechanisms regulates chitosugar uptake in Escherichia coli and Salmonella. Mol Microbiol 92:648–658

    Article  PubMed  CAS  Google Scholar 

  • Prévost K, Desnoyers G, Jacques JF et al (2011) Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage. Genes Dev 25:385–396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajagopala SV, Sikorski P, Kumar A et al (2014) The binary protein-protein interaction landscape of Escherichia coli. Nat Biotechnol 32:285–290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rolland T, Taşan M, Charloteaux B (2014) A proteome-scale map of the human interactome network. Cell 159:1212–1226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sahni N, Yi S, Taipale M et al (2015) Widespread macromolecular interaction perturbations in human genetic disorders. Cell 161:647–660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schu DJ, Zhang A, Gottesman S et al (2015) Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition. EMBO J 34:2557–2573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sedlyarova N, Shamovsky I, Bharati BK et al (2016) sRNA-mediated control of transcription termination in E. coli. Cell 167:111–121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma E, Sterne-Weiler T, O’Hanlon D et al (2016) Global mapping of human RNA-RNA interactions. Mol Cell 62:618–626

    Article  CAS  PubMed  Google Scholar 

  • Soper TJ, Woodson SA (2008) The rpoS mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA. RNA 14:1907–1917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soper T, Mandin P, Majdalani N et al (2010) Positive regulation by small RNAs and the role of Hfq. Proc Natl Acad Sci USA 107:2–7

    Article  Google Scholar 

  • Soper TJ, Doxzen K, Woodson SA (2011) Major role for mRNA binding and restructuring in sRNA recruitment by Hfq. RNA 17:1544–1550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sugimoto Y, Vigilante A, Darbo E et al (2015) hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature 519:491–494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tafer H, Hofacker IL (2008) RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics 24:2657–2663

    Article  CAS  PubMed  Google Scholar 

  • Team R (2013) R Development Core Team. R: a language and environment for statistical computing 55:275–286

    Google Scholar 

  • Tomasini A, Moreau K, Chicher J et al (2017) The RNA targetome of Staphylococcus aureus non-coding RNA RsaA: impact on cell surface properties and defense mechanisms. Nucleic Acids Res 45:6746–6760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Travis AJ, Moody J, Helwak A et al (2014) Hyb: a bioinformatics pipeline for the analysis of CLASH (crosslinking, ligation and sequencing of hybrids) data. Methods 65:263–273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tree JJ, Granneman S, McAteer SP et al (2014) Identification of bacteriophage-encoded anti-sRNAs in pathogenic Escherichia coli. Mol Cell 55:199–213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vidal M, Cusick MEE, Barabási A-L (2011) Interactome networks and human disease. Cell 144:986–998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waters SA, McAteer SP, Kudla G et al (2017) Small RNA interactome of pathogenic E. coli revealed through crosslinking of RNase E. EMBO J 36:374–387

    Article  PubMed  CAS  Google Scholar 

  • Wright PR, Richter AS, Papenfort K et al (2013) Comparative genomics boosts target prediction for bacterial small RNAs. Proc Natl Acad Sci USA 110:E3487–E3496

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu H, Braun P, Yildirim MA et al (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322:104–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai J. Tree .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wong, J., Pang, I., Wilkins, M., Tree, J.J. (2018). Systems-Level Analysis of Bacterial Regulatory Small RNA Networks. In: Rajewsky, N., Jurga, S., Barciszewski, J. (eds) Systems Biology. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-92967-5_6

Download citation

Publish with us

Policies and ethics